Read Alphakat text version

DIESEL FUEL VIA THE CATALYTIC DEPOLYMERIZATION

Transformation of wastes material in Diesel, water and fertilizer

AGENDA

1. Introduction 1.1 Problems 1.2 Solution 2. Main Characteristics 2.1 Technology comparison 2.2 Technology by emissions. 3. Funcionamiento sistema Alphakat 3.1 Plant Summary 3.2 Inputs and feedstock 3.3 Production 3.4 Production benefits and highlights 3.5 Production Hoyersweda 4. Scenarios 4.1 Industrial installation MSW Tarragona 4.2 Example installation biomass waste 5. Economical figures 5.1 Break Even global 5.2 break Even per hour 6. Appendice A: CO" Calculation (german)

2

1. INTRODUCTION

Inventor Dr.-Ing. Christian Koch Born in 1940 since 1967 in Franken (germany). Studied Process/chemical engineering 3 years associate professor at the engineering school then Reserch center Siemens Since 1973 KWU Erlangen (Brokdorf/Grohnde, Licenncing and aproval processes EVA), Development New Energies from waste materials, Gasification and start of the oil transformation technology. Since 2003 Alphakat GmbH with the ,,Friktionsturbinen-Verölungstechnik KDV" Construction of the plants Mexiko, Kanada, Hoyerswerda and Constanti/Tarragona (KDV 1.000) Since 2009 Development of new High performance turbines for a broad aplication spectrum (150 to 5.000 l/h Diesel) 3

1. INTRODUCTION

1.1 Problems

Waste CO2 Dioxines Methane Heat

- More and more waste - CO2 rise (burning) - Methan rise (combustion) Heat production rise

Example CO2 rise diagrams

Fuel problem Energy Water

4

1. INTRODUCTION

1.1 Problems

Limited fossil fuel resources Rising energy consumption Rising relevance of alternative energy sources

Waste CO2 Dioxines Methane Heat

Energy by source

Fuel problem Energy Consumption

Global Oil production

5

1. INTRODUCTION

1.2 Solution

[19:43:10] Oliver Hartmann (TMT Factory): Accelerating 300 million years of the nature to 3 minutes with Alphakat 100% crystalline catalyst istead of minerals 280 ­ 330 Cº max temperature instead of natures 4Cº

Mill. years

BY ALPHAKAT : 3 minutes

Step1

Conversion organics to bitumen with minerals and extraction of oxygen in form of CO2

Step1

- Mixing: Calatyst mixed with material. - Adsorption: Docking of the catalist on material - Reaction: New formation of hydrocarbons (diesel)

BY NATURE: 300

Step2

Depolymerization from bitumen to oil

Step2

Spiltting catalyst from diesel

Step3

Depolymerization from oil to Diesel

Step3

Destilation of diesel and water from calayst oil

6

1. INTRODUCTION

1.2 Solution

+ production of diesel or production of electric energy (peak power) + production of destilled water Selfsufficient production process: No additianal water needed Uses aprox 10% of the diesel produced

+ no dioxins + no CO2 (CO2 is recycled except for the exhaust of the generator) + all waste can be converted (except for glass, metal, porcelan, stones) + low temperature/pressure process (low risk) + heat is re-entered in the dehydration process (no heat pollution) The plant does not have a chimney

7

2. MAIN CHARACTERISTICS

8

Inputs ­ Material

Output

MSW (municipal solid waste) All Plastics Animal waste Mineral oils Sewage Sludge Agricultural waste Biomass cut material

Diesel fuel Destilled water Ash = fertilizer (1-3%) CO2 (re-entered in the process)

Application · Fuel (diesel, cars, jet fuel) · Generator fuel for electricity (Peak Load) · Chemistry Conclusion Changes convertible material into nonconvertible material as a energy storage medium

Advantages: · No emissions · No usable material necessary for the input · Efficiency (regarding the hydrocarbon content 65-90%) pending on the waterparts of the input material) · No temperature pollution with 300 degrees isolated in the production process

8

2. MAIN CHARACTERISTICS

2.1 Technology comparison Conventional processes

· Waste combustion · Waste gasification · Pyrolysis

9

ALPHAKAT

Chemical processes KDV (catalytic de-polimerization) Magnesium or aluminium silicate

9

2. MAIN CHARACTERISTICS

2.1 Technology by emissions 1<2

Combustion 100% - no firing added Allowable limit none Gasification 80% - no FT-loss Allowable limit Very problematic

10

Oil- and plastic residues

Emissions CO2 remark Dioxin Resins Pyrolysis 50% - no methane consumption Exceeds allowable limit Very problematic ALPHAKAT 10% - Own consumption No dioxins None

Auto recycling material

Emissions CO2 remark Dioxin Resins Combustion 100% - no firing added Allowable limit none Gasification Not possible n.a n.a. Pyrolysis 50% - no methane consumption Exceeds allowable limit Very problematic ALPHAKAT 10-20% - Own consumption No dioxins none

10

2. MAIN CHARACTERISTICS

2.1 Technology by emissions 2<2 Domestic waste predryed (no metal, glass or ceramic)

Emissions Combustion Gasification Pyrolysis ALPHAKAT

11

CO2 remark

Dioxin Resins

100% - no firing added

Allowable limit none

80% - no FT-loss

Allowable limit Very problematic

50% - no methane consumption

Exceeds allowable limit Very problematic

10% - Own consumption

No dioxins none

General impact: Energy Consumption

Emissions Energy consumption Combustion 800-1500ºC Depending on input material Gasification 750-950ºC Depending on input material Pyrolysis 450-950ºC Depending on input material ALPHAKAT 280-300ºC

11

3. SYSTEM FUNCTIONALITY

3.1 Plant Summary

12

SLUDGE PLANT

KDV PLANT

ASH PLANT

GENSET PLANT

OPTIONAL DESULPHURATION PLANT

12

3. SYSTEM FUNCTIONALITY

3.2 Inputs and feedstock

FEEDSTOCK WASTE TREATMENT INPUTS MSW (municipal solid waste) All Plastics Animal waste Mineral oils Sewage Sludge Agricultural waste Biomass cut material

13

Particle size: Max 25mm diameter Humidity: Max 20% weight Inorganics: Max 5% weight Calorific value Optimal mix (biomass content) Ash content

OUTPUT · Diesel quality 65 "Cetan" (20% more efficient compared to the diesel of a regular gas station) · Lower freezing point aprox. -60 Cº · Distilled Water · 1-3% ash (fertilizer) binds hazardous materials

PRODUCTION: 1,2 t biological mass = aprox 500L diesel depending on the water saturation. · NO chimney necesarry · NO heat pollution · NO Methane / CO2 · NO Dioxine

3. SYSTEM FUNCTIONALITY

3.3 Production

PROCESS (after feedstock Input)

14

Process 1: Mixing, Adsorption, Reaction: - Mixing: Calatyst mixed with material. Motor (consumption 3-10% of production)a diesel or electric motor or a gas turbine is used (helicopter) Turbine creates heat via friction of high speed revolutions - Adsorption: Docking of the crystalized ion-exchanged catalist on the molecular bindings of the material - Reaction: Molecular bundings are broken and formed new into saturaded hydrocarbon molecules without Oxygen Process 2: Desorption Hydration and spilitting of the catalist from the diesel , water and ash Process 3: Evaporation Destillation of the diesel and water. - Diesel pumped in Tanks for quality control - Catalist refreshed Process 4 (optional): Hydrofiner seperates sulphur residues if necessary

PARAMETER PH9 Depression 0,5 bar Temp. Max 320 Cº No chimney

SIZE 150 l/h 500 l/h 1000 l/h 2000 l/h 5000 l/h modular

PLANT DIMENSIONS* 500 l/h = 25 x 25 x 10 m 2000 l/h = 50 x 50 x 30 m 5000 l/h = 100 x 100 x 30 m

(*) without transport, storage or separation logistics

14

3. SYSTEM FUNCTIONALITY

BENEFITS

15

3.4 Production benefits and highlights

·The technological reproduction of the natural crude oil synthesis is accomplished within minutes ·Synthetic fuel can be produced at competitive prices ·The quality of ALPHAKAT-Diesel fuel is better than the EU-standards for conventional diesel fuel. ·No environmental pollution. The technology binds inorganic harmful substances in salt induced by the ionic changing characteristics of the catalyst. ·Environmental protection becomes a source of energy and jobs.

HIGHLIGHTS

·The ALPHAKAT process can use all materials containing hydrocarbons with reduced content of water and inorganics ·The efficiency is regarding to the low reaction temperature (280 ­ 320ºC), and high conversion rates (about 65 ­ 85 %) ·The plant does not produce coke and needs no cleaning system. ·The plant has not heating systems. The heat is coming from the friction in the turbine avoiding hot surfaces that can ignite materials. ·The vacuum controls the safety of the plant and the input system ·The residue is produced in solid form and offers the opportunity for the recycling of the catalyst ·The consumption of the catalyst is very low and the cost of the process is very competitive.

15

3. SYSTEM FUNCTIONALITY

3.5 Production Hoyersweda

16

16

4. SCENARIOS

17

4.1 Industrial installation MSW Tarragona

Plant building with control center and electricity generators

Waste pretreatment plant: cleaning & shredding Feedstock storage and transport conveyors Feedstock hopper and dosifier

Characteristics:

· Recycable plastics are separated and sold · Organic waste is pre-composted (dehydrated) · Diesel generators to create electricity to operate all components and vehicles of the plant

Alphakat Plan with connection to diesel tanks

17

4. SCENARIOS

18

4.2 Example instalation biomass waste

Plant building with control center and electricity generators

Dehydration plant: drying & shredding Feedstock storage and transport conveyors Feedstock hopper and dosifier

Characteristics:

· Modified feedstock preparation process ·Lower feedstock preparation cost Examples: - Sugar cane residues, sewr sludge, contaminated/oily soil/sand, "biofuel" plant mass, mineral oil residues, etc.

Alphakat Plan with connection to diesel tanks

18

4. SCENARIOS

Biomass examples:

· · · ·

19

4.2 Example instalation biomass waste

Sewer sludge Forrest waste Agricultural waste Energy through photosynthesis "biofuel-" plants as source of feedstock Plant deserts and cities with new type of plants as "Jatropha" having roots up to 10 m. Harvest the plants without destruction and without implications on the food chain. Create new jobs in planting, harvesting and conversion in diesel Create social structures Jatropha Sugar cane waste Palm oil waste

-1000 has. -8,000 tons Diesel per year

-1000 has. -9,000 tons Diesel per year

-1000 has. -7,000 tons Diesel per year 19

5. ECONOMICAL FIGURES

5.1 Break Even global

Year 1 6.624 4.363 2.261 0 2.261 11.933 4.505 10.884 6.731 9.775 8.937 8.601 11.124 7.360 13.289 6.048 15.431 4.660 17.550 3.193 19.643 1.641 21.709 0

20

TRESORY/DEBT Incomes Outcomes Cash Flow period Working capital

Tresory Long term loan Balance

Year 2 6.624 4.380 2.244

Year 3 6.624 4.398 2.226

Year 4 6.624 4.417 2.207

Year 5 6.624 4.438 2.186

Year 6 6.624 4.459 2.165

Year 7 6.624 4.482 2.142

Year 8 6.624 4.506 2.118

Year 9 6.624 4.531 2.093

Year 10 6.624 4.558 2.066

25.000

20.000

15.000

10.000

5.000

0

1

2

3

4

5

6

7

8

9

10

Cash Flow accumulated

Long term loan Balance

20

5. ECONOMICAL FIGURES

5.2 Break Even per hour

Breakeven Liters/Hour

4.000.000

21

3.500.000

3.000.000

2.500.000

Earnings

2.000.000

1.500.000

1.000.000

500.000

0

2.120

-500.000

1.920

1.720

1.520

1.320

1.120

920

720

520

Breakeven: 1,120 liters/hour ( 62% expected production)

21

APPENDICE A: CO2 CALCULATION

Chemie des Prozesses: Die Natur gestaltete die Erdölbildung in 2 Schritten: - CO2-Extraktion der abgestorbenen Tiere und Pflanzen zum Entzug von allem Sauerstoffgehaltes aus der Biomasse und damit Überführung von verweslicher Materie in unverwesliche Öle und -Depolymerisaton von langen Molekülen zu kürzeren Molekülen, also von Bitumen zu Ölen, Diesel und schließlich auch leichteren Kohlenwasserstoffen, wie Benzin und Erdgas. Die Entfernung des Sauerstoffgehaltes in Form von CO2 und nicht H2O, wie das bei thermischen technischen Prozessen, wie bspw. bei der Schwelung geschieht, ist durch die tiefe Umsetzungstemperatur des Naturprozesses gegeben. Dieses wird im gesamten Temperaturbereich der Erdölbildung realisiert bis zu den Umsetzungstemperatuen der KDV, die unterhalb von 300°C liegen. Durch diesen Prozeß wird nicht nur komplizierte biologische Materie, wie beispielsweise der Zellulosestruktur in eine Alkanstrukur, umgesetzt, sondern es wird sogar ein Wasserstoffüberschuß erzeugt, der in der KDV technisch genutzt wird.

Eine Zellulose kann beispielsweise für die Hydrierung von technischen, ungesättigten Kohlenwasserstoffen, wie technischen Ölen, Kunststoffen und Gummi, den Hydrierwasserstoff liefern nach der Reaktion:

Zellulose + technische Öle = gesättigte Kohlenwasserstoffe, also 4 x C6H11O5 (Zellulose) + C50 H92 (ungesättigtes technisches Öl) = 4 x C16H34 (Diesel/Kerosin) + 10 CO2. Diese Beispielrechnung aus 1 Tonne Zellulose + 1,06 Tonnen stark ungesättigte Öle = 675 kg CO2 + 1,385 Tonnen hochwertiger Alkandiesel zeigt die Aufgabe für die Eingangsstoffe, nämlich

- zu der Eingabe von technischen Abfällen aus Kunststoffen, Gummi und technischen Ölen oder Abfallölen wird die Zugabe von hydrierender Biomasse benötigt. Dabei kommt uns die Natur entgegen, da alle Biomasse in der KDV-Reaktion mehr oder weniger Wasserstoff freisetzen kann. -Bei Eingabe von reiner Biomasse entsteht immer ein hochwertiges Produkt gesättigter Kohlenwasserstoffe des Mitteldestillatbereiches (kurz genannt Diesel). Der dabei entstehende Wasserstoff reagiert mit einem Teil des Sauerstoffs zu Reaktionswasser und die CO2-Produktion ist um diesen Betrag geringer.

APPENDICE A: CO2 CALCULATION

Die KDV-Reaktion ist deshalb immer 1. eine diffusionskatalytische Neuformierung der Molekülstruktur 2. mit der Extraktion des Sauerstoffgehaltes als CO2, 3. Anlagerung des molekular feinen Katalysators durch Antransport mit dem Katalysatoröl an die zugeführte Kohlenwasserstoffmasse 4. ohne Koksablagerung 5. ohne Dehydrierung 6. ohne Harzstoffbildung 7. in einem kontinuierlichen Prozeß 8. unter Bildung von gesättigten Kohlenwasserstoffen 9. unter Vermeidung von Olefinen 10. unter Vermeidung von Aromaten und damit der Möglichkeit von Dioxin- oder Furanbildung 11. im Ionentausch Herauslösen der Säuren Halogene und Schwefel und 12. Regeneration des Katalysators mit Kalk in den Reaktionsstufen der KDV 1. Eintragssystem 2. Vorprozeßtechnik der Umwandlung der Feststoffe in einen Brei unter vollständiger Entwässerung (200 - 220°C) 3. KDV-Prozeß mit "Friktionsturbinen" unter Freisetzung der Kohlenwasserstoffe als Mitteldestillat und der restlichen CO2-Menge und 4. Ascheanlage zur Limitierung des Salzgehaltes und der nicht umsetzbaren anorganischen Stoffe in der KDV (Metall, Glas, Keramik, Steine) und 5. bei Anforderung Nachentschwefelung (Hydrofiner)

APPENDICE A: CO2 CALCULATION

Beispiel Zellulose:

KDV: C6H11O5 = 2 CO2 + 1 H2O + C4H9 , also 163 kg Zellulose = 88 kg CO2 + 18 kg Wasser + 57 kg gesättigte Kohlenwasserstoffe Verbrennung von 57 kg KWS = 176 kg CO2 + 81 kg Wasser , also 1 t Zellulose = 539 kg CO2 (275 m3 CO2) + 111 kg Wasser + 350 kg Diesel Verbrennung: 1 t Zellulose = 1860 kg CO2 (948 m3 CO2) + 610,5 kg Wasserdampf KDV: 1 Tonne Zellulose + 1,06 Gummi oder stark ungesättigte Öle = 675 kg CO2 + 1,385 Tonnen Alkandiesel Verbrennung dieses Gemisches: = 5.028 Tonnen CO2 + 1.781 Tonnen Wasserdampf Tabellarische Gegenüberstellung von KDV und Verbrennung: Stoff Zellulose CO2 KDV 29 % Wasser KDV 18 % CO2 Verbrennung Wasserdampf Verbrennung 100 % 100 %

Transformation of organic materials in Zellulose + destilled water and fertilizer Diesel, Gummi oder

Bitumen 13,4 % 0% 100 %

100 %

Information

Alphakat

24 pages

Find more like this

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

912547