Read Microsoft Word - Bilangan Pecahan.doc text version

SMP - 1

BILANGAN PECAHAN

1. Pengertian Bilangan Pecahan Bilangan pecahan adalah bilangan yang disajikan/ditampilkan dalam bentuk ; a ; a , b bilangan bulat dan b 0 b a disebut pembilang dan b disebut penyebut contoh: Dua buah mangga dibagikan seorang ibu kepada 3 orang anaknya. Berapa bagian yang didapatkan oleh setiap anaknya ? jawab: masing-masing anaknya memperoleh 2. Bentuk dan Jenis Pecahan

2 bagian. 3

a. Pecahan biasa contoh :

1 3 , 2 5

b. Pecahan campuran contoh: 3 4 1 ,7 5 3

c. Pecahan desimal contoh: 0,3 , 0,25 d. Persen (perseratus ) contoh: 30 % = 30 100

e. Permil (perseribu) contoh: 20 = 20 1000

WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 2

3. Pecahan Senilai

Apabila pembilang dan penyebut dikali atau dibagi dengan bilangan yang sama

a axm a:m = = b bxm b:m

Contoh: 1. 2 2 x3 6 = = 3 3 x3 9 2 2:2 1 = = 8 8:2 4

2.

4. Mengubah Bentuk Pecahan ke Bentuk Lain

a. Merubah pecahan biasa menjadi pecahan campuran (dapat dilakukan apabila pembilang lebih besar dari penyebut) contoh: 5 2 =1 3 3 5 dibagi 3 didapatkan 1 dengan sisa kelebihan 2 3

b. Merubah pecahan campuran menjadi pecahan biasa contoh: 4 2 22 = 5 5 caranya : hasil perkalian 4x5 ditambahkan 2 hasilnya 22 4 dikalikan c Merubah pecahan biasa menjadi pecahan desimal contoh: 2 2 x2 4 = = = 0,4 (desimal penyebutnya adalah per 10,100,1000,...) 5 5 x 2 10 2 5 (pembilangnya 5)

penyebutnya dijadikan 10 maka 5 x n = 10 pembilangnya juga dikalikan 2

n=2

WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 3 d Merubah pecahan desimal menjadi pecahan biasa contoh: 0,5 = 5 5:5 1 = = 10 10 : 5 2 1 dibelakang koma berarti persepuluh

cari FPB dari 5 dan 10 didapatkan 5 e Merubah pecahan desimal menjadi pecahan campuran contoh: 2,45 = 2 45 45 : 5 9 =2 =2 100 100 : 5 20 cari FPB dari 45 dan 100 didapatkan 5 Untuk mengingat mencari FPB bisa dibaca di : http://belajar-matematika.com/2009/05/25/kelipatan-persekutuan-terkecil-kpk-dan-faktorpersekutuan-terbesar-fpb-sd/ http://belajar-matematika.com/2009/05/25/menentukan-kpk-dan-fpb-secara-bersamaanlanjutan-sd/ f Merubah pecahan biasa ke dalam bentuk persen dan permil contoh: 1. 3 3 3x100 300 = x 100 % = %= % = 60 % 5 5 5 5 3 3 3x1000 3000 = x 1000 = = = 600 5 5 5 5

2.

g Merubah persen dan permil ke dalam bentuk pecahan biasa contoh : 1. 20 % = 20 20 : 20 1 = = 100 100 : 20 5 1. 20 adalah FPB dari 20 dan 100 2. kalau pembilang bisa dibagi oleh penyebut atau sebaliknya gunakan angka tersebut (contoh di atas) 2. 30 = 30 30 : 10 3 = = 1000 1000 : 10 100 1. 10 adalah FPB dari 30 dan 100 2 contoh di atas pembilang tidak bisa dibagi oleh penyebut. WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 4

5. Menyederhanakan Pecahan

Bentuk pecahan dapat disederhanakan dengan cara membagi pembilang dan penyebut dengan Faktor Persekutuan Terbesar (FPB).

Contoh : Sederhanakan pecahan jawab : 1. 9 = ? 15

9 18 dan 15 45

FPB dari 9 dan 15 adalah 3 Sehingga 18 =? 45 9 9:3 3 = = 15 15 : 3 5

2.

FPB dari 18 dan 45 adalah 9 sehingga 18 18 : 9 2 = = 45 45 : 9 5

6. Membandingkan Dua Pecahan

Hubungan antara dua pecahan dapat ditentukan dengan menyamakan penyebut dari kedua pecahan tersebut (dicari KPK dari kedua penyebutnya): contoh: Dari pecahan 2 3 dan mana yang lebih kecil ? 5 7

Jawab: Penyebut dari pecahan di atas adalah 5 dan 7 KPK 5 dan 7 adalah 35 2 14 3 15 Sehingga = (35:5x2 = 14) ; = 5 35 7 35

(35:7x3 = 15)

WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 5 14 15 2 3 < maka < 35 35 5 7

7. Operasi Pada Pecahan

a. Penjumlahan Penjumlahan antara dua pecahan atau lebih dilakukan dengan menggunakan KPK dari kedua atau lebih penyebutmya. 1. Jika penyebutnya sama : a c a+c + = b b b dengan syarat apabila b 0 contoh : 2 4 6 1 + = = 5 5 5 5 5 2. Jika penyebutnya tidak sama : a c + = b d

a+c KPK (b _ dan _ d )

Bisa juga secara langsung yaitu

a c a+c + = b d bxd

Syarat b dan d 0 Contoh : 4 2 4+2 8 + = = 5 3 5 x3 15 (penyelesaian dengan cara KPK dan secara langsung didapat hasil yang sama)

WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 6 b. Pengurangan 1. Jika penyebutnya sama :

a c a-c = b b b

dengan syarat apabila b 0 contoh : 5 3 2 = 7 7 7 2. Jika penyebutnya tidak sama :

a c (axd ) - (cxb) = b d bxd

Syarat b dan d 0 Contoh : 4 2 - =? 5 3 a=4;b=5;c=2;d=3 4 2 (4 x3) - (2 x5) 12 - 10 2 - = = = 5 3 5 x3 5 x3 15 atau dengan cara perhitungan sbb : 4 2 ((5 x3 : 5) x 4) - ((5 x3 : 3) x 2) 12 - 10 - = = 5 3 5 x3 15 = 2 15

c. Perkalian Perkalian antara dua pecahan atau lebih dilakukan dengan mengalikan pembilang dengan pembilang dan penyebut dengan penyebut.

a c axc x = b d bxd

dengan syarat b dan d 0 WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

SMP - 7 Contoh : 1. 2 4 2 x4 8 x = = 3 5 3 x5 15 3 3 5 3 x5 15 3 x5 = x = =3 = 4 4 1 4 x1 4 4 3 1 18 7 18 x7 126 6 6:3 2 x2 = x = =8 =8 =8 = 5 3 5 3 5 x3 15 15 15 : 3 5

2.

3. 3

d. Pembagian Pembagian bisa disebut sebagai perkalian dengan kebalikan dari pembaginya a:b=ax 1 ; dengan b 0 b

a c a d : = x ; dengan b,c dan d 0 b d b c

e. Pemangkatan

a a a a a = x x x ...x b b b b b

n

sebanyak n faktor dengan syarat b 0 contoh :

2 2 2 2 x2 x2 8 2 = = x x = 3 3 3 3 x3 x3 27 3

3

WWW.BELAJAR-MATEMATIKA.COM Diperbolehkan memperbanyak dengan mencantumkan sumbernya

Information

Microsoft Word - Bilangan Pecahan.doc

7 pages

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

116014


You might also be interested in

BETA
Microsoft Word - Bentuk Aljabar.doc
Microsoft Word - Operasi Hitung Dalam Matematika _bag1_.doc
00_sampul_depan.pdf
Microsoft Word - Operasi Hitung Dalam Matematika _bag1_.doc
Microsoft Word - Bilangan Pecahan.doc