Read Microsoft Word - TOC-DirectConversionMethaneEthaneCO2_August 2008_.doc text version

The Catalyst Group Resources, Inc.

Direct Conversion Of Methane, Ethane And Carbon Dioxide To Fuels And Chemicals

(completed August 2008) A technical investigation commissioned by the members of the Catalytic Advances Program

CONTENTS

1. 2. INTRODUCTION ..................................................................................................................1 DIRECT METHANE CONVERSION TO FUELS AND CHEMICALS .............................7 2.1 INTRODUCTION ..........................................................................................................7 2.1.1 Methane Conversion to Fuels and Chemicals.............................................................7 2.1.2 Scope and Focus of the Chapter..................................................................................8 2.2 METHANE CRACKING ...............................................................................................8 2.2.1 Production of Hydrogen Free of Carbon Monoxide ...................................................8 2.2.2 Oxidative Cracking and Autothermal Cracking .........................................................9 2.2.3 Catalysts, Reactors, and Processes..............................................................................9 2.3 OXIDATIVE COUPLING OF METHANE.................................................................11 2.3.1 OCM Fundamentals ..................................................................................................11 2.3.2 OCM Catalysts..........................................................................................................13 2.3.3 OCM Reactors ..........................................................................................................14 2.3.4 OCM Processes.........................................................................................................18 2.4 SELECTIVE PARTIAL OXIDATION OF METHANE (SPOM)...............................19 2.4.1 SPOM Fundamentals ................................................................................................19 2.4.2 Catalysts and Reaction Mechanisms.........................................................................19 2.5 CONVERSION OF METHANE TO AROMATICS WITHOUT AN OXIDANT......24 2.5.1 Methane Dehydroaromatization (MDA)...................................................................24 2.5.2 Catalysts for MDA....................................................................................................25 2.5.3 MDA Reaction Mechanism ......................................................................................26 2.6 METHANE­ALKENE COUPLING............................................................................27 2.7 EARLY-STAGE DIRECT METHANE CONVERSION PROCESSES .....................28 2.7.1 Methane Activation and Functionalization...............................................................28 2.7.2 Plasma-Assisted Methane Conversion......................................................................30 2.7.3 Methane Halogenation and Oxyhalogenation...........................................................31

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

2.7.4 Biological and Biomimetic Methane Conversion Processes ....................................35 2.8 COMBINATIONS OF METHANE CONVERSION PROCESSES ...........................36 2.8.1 Pyrolysis and Hydrogenation....................................................................................36 2.8.2 Aromatization and Steam-Reforming .......................................................................36 2.9 CONCLUSIONS AND RECOMMENDATIONS .......................................................37 2.10 REFERENCES .............................................................................................................38 3. DIRECT ETHANE CONVERSION TO FUELS AND CHEMICALS ...............................41 3.1 INTRODUCTION ........................................................................................................41 3.2 OXIDATIVE DEHYDROGENATION OF ETHANE (ODE) ....................................41 3.2.1 ODE Catalysts...........................................................................................................42 3.2.2 ODE Reactors ...........................................................................................................46 3.2.3 ODE Processes and Products ....................................................................................50 3.3 DIRECT DEHYDROGENATION OF ETHANE .......................................................50 3.3.1 Nonoxidative Dehydrogenation ................................................................................51 3.3.2 Oxidative Cracking of Ethane...................................................................................52 3.3.3 Autothermal Cracking of Ethane ..............................................................................53 3.4 SELECTIVE PARTIAL OXIDATION OF ETHANE (SPOE) ...................................53 3.4.1 Partial Oxidation of Ethane to Acetic Acid ..............................................................54 3.4.2 Ethane Conversion to Other Oxygenated Products .................................................58 3.4.3 Ethane Ammoxidation to O- and N-Containing Products ........................................58 3.5 ETHANE OXIDATION WITH CHEMICAL OXIDANTS ........................................59 3.5.1 Ethane Oxidation or Oxydehydrogenation with Carbon Dioxide.............................59 3.5.2 Oxidative Dehydrogenation of Ethane with CO as Oxidant.....................................61 3.5.3 Ethane Oxidation or Oxydehydrogenation with N2O ...............................................62 3.5.4 Ethane Oxidation in the Presence of Sulfur Compounds..........................................63 3.5.5 Solid Redox Oxidants ...............................................................................................64 3.5.6 Other Alternative Oxidants .......................................................................................64 3.6 ETHANE HALOGENATION AND OXYHALOGENATION...................................65 3.6.1 Oxychlorination of Ethane........................................................................................66 3.6.2 GRT Process .............................................................................................................67 3.7 COMBINATIONS OF ETHANE CONVERSION PROCESSES ...............................69 3.7.1 Ethylene Production from Methane and Ethane .......................................................69 3.7.2 Use of Ethane in Alkylation and Aromatization Reactions ......................................70 3.8 COMMERCIAL ACTIVITIES AND OUTLOOK FOR DIRECT ETHANE CONVERSION.............................................................................................................71 3.9 CONCLUSIONS AND RECOMMENDATIONS .......................................................73 3.10 REFERENCES .............................................................................................................73 4. CONVERSION OF CARBON DIOXIDE TO FUELS AND CHEMICALS ......................85 4.1 INTRODUCTION ........................................................................................................85

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

4.1.1 Roles of Carbon Dioxide in Industry ........................................................................86 4.1.2 Types of Carbon Dioxide Conversion Processes and Products ................................87 4.1.3 Potential Advantages and Benefits of Carbon Dioxide Conversion.........................90 4.1.4 Scope and Focus of Chapter .....................................................................................91 4.2 CARBON DIOXIDE REACTIONS WITH HYDROGEN..........................................91 4.2.1 Reverse Water Gas Shift (RWGS)............................................................................92 4.2.2 Methanol and DME Synthesis ..................................................................................95 4.2.3 Carbon Dioxide Hydrogenation to Hydrocarbons ..................................................105 4.3 CARBON DIOXIDE REACTIONS WITH HYDROCARBONS .............................121 4.3.1 Dry Reforming of Methane....................................................................................121 4.3.2 Mixed Reforming and Tri-Reforming of Methane .................................................128 4.3.3 Reactions of Carbon Dioxide with Other Hydrocarbons........................................131 4.4 ORGANIC SYNTHESES WITH CARBON DIOXIDE............................................145 4.4.1 Urea Synthesis and Utilization................................................................................147 4.4.2 Carbon Dioxide as a Building Block for Carbonylation and Polymers..................150 4.5 EARLY-STAGE CARBON DIOXIDE CONVERSION PROCESSES....................156 4.5.1 Biological Fixation of Carbon Dioxide...................................................................156 4.5.2 Photo- and Electro-Chemical/Catalytic Conversion of CO2 ...................................158 4.5.3 Microwave and Plasma Processes ..........................................................................159 4.6 CARBON DIOXIDE AS BOTH REACTANT AND REACTION MEDIUM OR SOLVENT............................................................................................................160 4.6.1 Potential of CO2 in Synthetic Organic Chemistry ..................................................160 4.6.2 Hydrogenation of CO2 in scCO2 .............................................................................160 4.6.3 Copolymerization of Epoxides and CO2 in scCO2 .................................................161 4.6.4 Reactions of CO2 with Unsaturated Hydrocarbons in scCO2 .................................161 4.6.5 Carboxylation of Aromatics....................................................................................161 4.7 INTEGRATED PROCESSES INVOLVING CARBON DIOXIDE .........................162 4.7.1 Solar Thermal and Thermochemical Cycle Processes............................................162 4.7.2 Integration of Carbon Dioxide Separation, Recovery, and Conversion ................163 4.8 COMMERCIAL ACTIVITIES AND OUTLOOK FOR CARBON DIOXIDE RECOVERY ...............................................................................................................164 4.9 R&D PROGRAMS, NEEDS, AND OPPORTUNITIES IN CARBON DIOXIDE CONVERSION .........................................................................................165 4.10 CONCLUSIONS AND RECOMMENDATIONS .....................................................166 4.11 REFERENCES ...........................................................................................................167 5. INDEX ................................................................................................................................187

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

FIGURES

Figure 2.1 Figure 2.2 Figure 2.3 Figure 2.4 Figure 2.5 Figure 2.6 Figure 2.7 Standard Free Energies Of Reaction For Selected Conversions Of (A) Methane, (B) Methane And Oxygen.....................................................................12 Bubbling Fluidized-Bed Reactor For The OCM Reaction ...................................16 Circulating Fluidized-Bed Reactors For The OCM Reaction...............................16 Block Flow Diagram Of Bechtel's Conceptual OCM Process.............................18 Yield Of HCHO And CH3OH At Different NO Concentrations At Atmospheric Pressure, 610ºc, CH4/O2 = 2 (Molar), Catalyst Mass = 0.20 G.......21 Selectivity To C1-Oxygenates Versus Methane Conversion At Different NO Concentrations In The Feed: () 0.0%; () 0.03%; () 0.14%; () 0.39% ..........22 Effect Of Temperature And CH4/O2 Ratio On (A) Methane Conversion, (B) Yield Of C1-Oxygenates At CH4 Concentration = 22.9­34.4% (Molar), 1.0 Vol% NO In N2, Catalyst Mass = 0.30 G; ......................................................23 Mechanism Of Methane Dehydrogenation Under Low Spatial Velocity (10-3 S) Over 3%Mo/HZSM-5 ..............................................................................26 (A) Schematic Of The INL Plasma Fast-Quench Reactor; (B) Pressure And Temperature Profiles In The Nozzle.............................................................31 Block Flow Diagram Of The Production Of Methanol From Methane Using The Perchoroethylene Oxychlorination Process. 1, Catalytic Reactor; 2, Vent; 3, Distillation Column; 4, Thermal Reactor; 5, Absorber; 6, Stripper....32 Flow Diagram Of The Production Of Ethylene From Methane Using The Oxychlorination Process. R1, First Catalytic Reactor; R2, Thermal Reactor; R3, Second Catalytic Reactor; D, Distillation Column; A1, First Absorption Column; A2, Second Absorption Column ............................................................33 Ethylene Selectivity Versus Ethane Conversion For Various ODE Catalysts At Different Temperatures ....................................................................43 ODE Over Ni-Nb-O Mixed Oxides With Different Ni/Nb Atomic Ratios At 450ºC................................................................................................................45 Variation Of The Selectivity To Ethylene With Ethane Conversion During The Oxidation Of Ethane On Pt-Lamoo3 Catalyst. Reaction Conditions: C2H6/O2 Ratio 1.5­2.25, H2/O2 Ratio 0­4, O2 Flow Rate 19­35 Slph .................49 (A) Variation Of Yield Of Ethylene With The O2/C2 Ratio, (B) Cracking Selectivity Vs. Ethane Conversion, During The Oxycracking Of Ethane At 850­900ºc Over Pt/Al2O3, Pt/Meox (Me = Ce, Zr, Baal, Or Mg), Pt Gauze, Or Rh Catalysts .....................................................................................................52 Selectivity In Oxidation Reactions Vs. Difference Between The Bond Dissociation Enthalpy Of The Weakest C­H Bond In The Reactant And The Bond Dissociation Enthalpy Of The Weakest Bond In The Partial Oxidation Product ..................................................................................................................54 Possible Reaction Scheme Of Ethane Oxidation To Acetic Acid ........................56

Figure 2.8 Figure 2.9 Figure 2.10

Figure 2.11

Figure 3.1 Figure 3.2 Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

Figure 3.7 Figure 3.8

Figure 3.9 Figure 3.10 Figure 3.11

Figure 4.1 Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5

Figure 4.6

Figure 4.7 Figure 4.8 Figure 4.9

Figure 4.10

Thermodynamic Equilibrium And Main Reactions In Dehydrogenation, Oxidative Dehydrogenation With CO2, And Reforming Of Ethane.....................60 Selectivity To Ethylene As Function Of Ethane Conversion With O2 And N2O As Oxidants Over MCM-4-Supported Vanadia Catalyst (5wt % Of VAtoms). Reaction Conditions: 500ºC, 1 Bar, C2H6/O2/Ne = 40/20/40, C2H6/N2O/Ne = 40/40/20......................................................................................63 Reactions Involved In The Oxidative Dehydrogenation With S-Compounds As Oxidants...........................................................................................................63 Product Distribution Obtained During The Reaction Of Ethyl Bromide Over K-Free And K-Containing Co Or Cu Oxides Supported On ZrO2 ..............68 Comparison Of Capital Cost Estimates For Possible Ethane-Based Processes In The Production Of Acetic Acid (AA) And Vinyl Chloride (VCM)...................................................................................................................72 Distribution Of Worldwide Large Stationary CO2 Emissions Sources Of More Than 0.1 Million Tons Of CO2 Per Year ....................................................86 Main Routes For CO2 Conversion Processes And Classes Of Products Obtained................................................................................................................88 General Scheme Of CO2 Transformation Routes and Industrial Processes Using Carbon Dioxide ..........................................................................................89 Thermodynamic Equilibria For Methanol Synthesis From (A) Syngas And (B) CO2/H2 Mixtures.....................................................................................97 (A) Activities Of Various Cu/Zno-Based Ternary Catalysts (STY = Space-Time Yield) For Methanol Synthesis From CO2(25%)/H2(75%) As A Function Of Cu Surface Area. Reaction Conditions: 523 K, 5 Mpa, F/W = 18,000 Mlfeed/Gcat·H. The Metal Oxide Contents Of Each Of The Cu/Zno-Based Catalysts Are Indicated In The Figure. (B) Long-Term Stability Of A Cu/Zno/Zro2/Al2O3/Sio2 Catalyst During Methanol Synthesis From A Feed-Gas Containing CH3OH And H2O. Reaction Conditions: 523 K, 5 Mpa, SV = 10,000 H-1, Feed = CO2(22%)/CO(3%)/H2(75%), Partial Pressure Of CH3OH = 11 Kpa, Partial Pressure Of H2O = 6 Kpa ..........100 Yield Of Methanol In The Bench-Scale CAMERE Process As A Function Of (A) Recycle Flow Rate For Zero (No RWGS) And 60% CO2 Conversion In The RWGS Reactor, And (B) CO2 Conversion In The RWGS Reactor At Three Different Recycle Flow Rates..............................................................102 Schematic Process Flow Diagram For CAMERE Process .................................104 Flow Diagram Of The Lurgi Process For Methanol Synthesis From Carbon Dioxide...................................................................................................105 Conversion Of CO2 And Hydrocarbon Selectivity For A Fe-K/-Al2O3 Catalyst Prepared In The Presence Or Absence Of Polyethylene Glycol (PEG). Reaction Conditions: 573K, H2/CO2 = 3:1, Flow Rate = 2,000 Ml/Gcat·H .........108 Proposed Reaction Mechanism For CO2 Hydrogenation On Fe-K/Al2O3 Catalysts..............................................................................................................111

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

Figure 4.11

Figure 4.12 Figure 4.13 Figure 4.14 Figure 4.15 Figure 4.16 Figure 4.17 Figure 4.18 Figure 4.19 Figure 4.20 Figure 4.21

Figure 4.22 Figure 4.23 Figure 4.24 Figure 4.25

Figure 4.26

Figure 4.27

(A) Molecular Weight Distribution Of Hydrocarbons As A Function Of The Carbon Number (Cat. = Fe-Cu-Al-K, SV = 2000 Ml/Gcat H, P = 1 Mpa, H2/CO2 = 3). (B) Influence Of The Process Parameters In The Different Types Of Reactor On The Product Distribution..................................112 Proposed Mechanism For Ethanol Synthesis From CO2 + H2 On [Rh10Se]/Tio2 Catalyst ........................................................................................116 Reaction Scheme In The Formation Of Formic Acid Using Ru Or Ir Complexes In Aqueous Solution ........................................................................117 Proposed Mechanism For The Rhodium-Catalyzed CO2 Hydrogenation To Formic Acid...................................................................................................119 Suggested Mechanism Of The Hydrogenation Of Bicarbonate Catalyzed By [RuCl2(TPPMS)2]2 In Aqueous Solution ......................................................120 Haldor Topsoe SPARG Process Flow Diagram .................................................125 Carbon Limits At Thermodynamic Equilibrium................................................126 Simplified Flow Sheet For Calcor Standard Process..........................................127 Cost Of On-Site Production Of CO By The Calcor Standard And Economy Processes .............................................................................................................128 Conceptual Design Of The Process For Tri-Reforming Natural Gas Using Flue Gas From Fossil Fuel-Based Power Plants.................................................129 CO2 Conversion (A, Top Left), H2/CO Ratios (B, Top Right) And CH4 Conversion (C, Bottom Left) In The Tri-Reforming Reaction Over 100 Mg Supported Ni Catalysts At 1 Atm And Feed Composition Of CH4:CO2:H2O:O2 = 1:0.48:0.54:0.1 (CH4 Flow Rate = 25 Ml/Min). Time-On-Stream Profile (D, Bottom Right) For CO2 And CH4 Conversions In The Tri-Reforming Reaction Over Ni-Mgo-Cezro Catalyst At 850°C Under 1 Atm With Feed Composition Of CH4:CO2:H2O:O2 = 1:0.475:0.475:0.1 (CH4 Flow Rate = 25 Ml/Min) In A Stainless Steel Reactor........................................................................................131 Catalytic Performance In Methane Coupling At 1098 K Of CeO2/ZnO Conventional Catalyst And Nanocatalyst As A Function Of ZnO Content .......132 Chromium Redox Cycle In Ethane Dehydrogenation With Carbon Dioxide.....135 Simplified Flowsheet Of SODECO2 Process For Producing Styrene By Dehydrogenation Of Ethylbenzene In The Presence Of CO2 .............................139 (A) Stability Of The CO2-EBD Catalyst In The Bench-Scale Reactor. (B) Comparison Of The New CO2-EBD Catalyst Versus A Commercial Steam-EBD Catalyst ...........................................................................................139 Effect Of CO2 On (A) Liquid-Phase Oxidation Of Ethylbenzene To Acetophenone And Benzoic Acid; (B) Liquid-Phase Synthesis Of Terephthalic Acid; (C) Gas-Phase Oxidative Dehydrogenation Of 4-Ethyltoluene To 4Methylstyrene; (D) Gas-Phase Oxidation Of Styrene To Benzaldehyde And Benzoic Acid.......................................................................................................144 Utilization Of Carbon Dioxide In Synthetic Organic Chemistry........................146

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

TABLES

Table 2.1 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 3.5 Table 3.6 Table 3.7 Table 3.8 Table 4.1 Performance Of Various 2wt% Mo/HZSM-5 Catalysts In Methane Dehydroaromatization (Tan Et Al., 2007) ............................................................25 Comparison Of Steam-Cracking, Catalytic Dehydrogenation (CDE), And Oxidative Dehydrogenation (ODE) Of Ethane.....................................................42 Autothermal Cracking Of Ethane On Pt-Cu-Based Catalysts (Bharadwaj Et Al., 2003)..........................................................................................................53 Selective Oxidation Of Ethane To Acetic Acid On Representative Catalysts................................................................................................................55 ODE With CO2 On Representative Catalysts .......................................................60 Influence Of CO In The Feed During The ODE With CO ...................................62 Oxidation Of Methane And Ethane On Solution Of N-Bu4NVO3 (Gonzalez Cuervo Et Al., 2004) ...........................................................................65 Oxychlorination Of Ethane Over Cucl2/-Al2O3-Based Catalysts........................66 Ethane Bromination To Ethyl Bromide, 1,1-Dibromoethane, And 1,2Dibromoethane (Yilmaz, Et Al., 2005).................................................................68 Comparison Of The KIST (CAMERE) And NITE/RITE Processes For CO2 Conversion To Methanol (Bench-Scale, 50­100 KgCH3OH/Day) (CDRS, (Carbon Dioxide Reduction And Sequestration R&D Center, Korea 2007) ......101 Activities In CO2 Hydrogenation Of Different Hybrid Catalysts (Park Et Al., 2004) ..............................................................................................110 CO2 Hydrogenation Over A Fe-K/Al2O3 Catalyst Using Different Reactors (Adapted From Lee Et Al., 2004b) .....................................................................110 Ethanol Synthesis On Supported [Rh10Se] And Rh/Tio2 Catalysts (Izumi, 1997).......................................................................................................115 Reduction Of H2O And CO2 Over Fe0-Based Composite Catalysts (Guan Et Al., 2003).............................................................................................117 Catalytic Systems For Formic Acid Synthesis By CO2 Hydrogenation (Omae, 2006) ......................................................................................................118 Catalytic Activity Of Various Ru(II) Complexes In The Hydrogenation Of Sodium Bicarbonate In Aqueous Solutions (Jessop Et Al., 2004) ................120 Results From SPARG Monotube Demonstration Test (Song And Guo, 2006b)...................................................................................................................125 Typical H2/CO Ratio And CH4 Content For The Main CO Generating Processes (Teuner Et Al., 2001) ...........................................................................126 Catalyst Systems For Methane Coupling With Carbon Dioxide To C2 Hydrocarbons (Wang And Zhu, 2004).................................................................133 Catalyst Systems For CO2 ODH Of Ethane (C2H6) To Ethylene (C2H4) (Wang And Zhu, 2004) ........................................................................................134

Table 4.2 Table 4.3 Table 4.4 Table 4.5 Table 4.6 Table 4.7 Table 4.8 Table 4.9 Table 4.10 Table 4.11

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

Table 4.12

Table 4.13

(A) Comparison Of Commercial Ethylbenzene Dehydrogenation (EBD) And CO2-EBD Catalytic Processes; (B) Comparison Of Economics Of SODECO2 And Conventional EBD Processes (Chon, 2003).................................................138 Enthalpy And Free Energy Of Formation Of Some Chemicals Relevant To CO2 (Adapted From Aresta And Dibenedetto, 2007) ..........................................147

Catalytic Advances Program managed by:The Catalyst Group Resources, Inc., P.O. Box 680 Spring House, PA 19477, Phone: (215) 628-4447, Fax: (215) 628-2267, E-mail: [email protected], Website: www.catalystgrp.com

Information

Microsoft Word - TOC-DirectConversionMethaneEthaneCO2_August 2008_.doc

8 pages

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

535062


You might also be interested in

BETA
Unit Process and unit operation
BIOBASED FEEDSTOCK
PII: S0926-860X(01)00816-X