Read Technical Overview of 3GPP LTE text version

Technical Overview of 3GPP Long Term Evolution (LTE)

Feb. 8, 2007 Hyung G. Myung ([email protected])

Outline

Introduction LTE System Architecture LTE Downlink Physical Layer (OFDMA) LTE Uplink Physical Layer (SC-FDMA) LTE Physical Layer Procedures Summary and Conclusions

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

1

Disclaimer

· 3GPP LTE standardization process is still on-going at current moment. Many of the technical details presented here may change or evolve into different forms.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

2

Introduction

LTE System Architecture LTE DL PHY Layer (OFDMA) LTE UL PHY Layer (SC-FDMA) LTE PHY Layer Procedures Summary and Conclusions

3GPP Evolution

· Release 99 (Mar. 2000): UMTS/WCDMA · Rel-5 (Mar. 2002): HSDPA · Rel-6 (Mar. 2005): HSUPA · Rel-7 (???, 2007): DL MIMO, IMS (IP Multimedia Subsystem), optimized real-time services (VoIP, gaming, push-to-talk). · Long Term Evolution (LTE)

­ 3GPP work on the Evolution of the 3G Mobile System started in November 2004. ­ Currently, standardization in progress in the form of Rel-8. ­ Spec scheduled to be finalized by the end of 2007/early 2008. ­ Target deployment in 2010.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

4

Requirements of LTE

· Peak data rate

­ 100 Mbps DL/ 50 Mbps UL within 20 MHz bandwidth.

· Up to 200 active users in a cell (5 MHz) · Less than 5 ms user-plane latency · Mobility

­ Optimized for 0 ~ 15 km/h. ­ 15 ~ 120 km/h supported with high performance. ­ Supported up to 350 km/h or even up to 500 km/h.

· Coverage

­ Performance should be met for 5 km cells with slight degradation for 30 km cells. Up to 100 km cells not precluded.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

5

Requirements of LTE - cont.

· Enhanced multimedia broadcast multicast service (E-MBMS) · Spectrum flexibility

­ 1.25 ~ 20 MHz

· Enhanced support for end-to-end QoS

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

6

Key Features of LTE

· Multiple access scheme

­ DL: OFDMA with CP. ­ UL: Single Carrier FDMA (SC-FDMA) with CP.

· Adaptive modulation and coding

­ DL modulations: QPSK, 16QAM, and 64QAM ­ UL modulations: QPSK and 16QAM ­ Rel-6 Turbo code: Coding rate of 1/3, two 8-state constituent encoders, and a contention-free internal interleaver.

· Advanced MIMO spatial multiplexing techniques

­ (2 or 4)x(2 or 4) downlink and uplink supported.

· Multi-layer transmission with up to four streams.

­ Multi-user MIMO also supported.

· ARQ within RLC sublayer and Hybrid ARQ within MAC sublayer.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

7

Key Features of LTE - cont.

· Power control and link adaptation · Implicit support for interference coordination · Support for both FDD and TDD · Possible support for operating as single frequency network (SFN) to support MBMS

­ Time-synchronized common waveform transmitted from multiple cells.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

8

Introduction

LTE System Architecture

LTE DL PHY Layer (OFDMA) LTE UL PHY Layer (SC-FDMA) LTE PHY Layer Procedures Summary and Conclusions

LTE Network Architecture

· E-UTRAN (Evolved Universal Terrestrial Radio Access Network)

UMTS 3G: UTRAN EPC (Evolved Packet Core)

GGSN SGSN RNC RNC

aGW (MME/UPE)

aGW (MME/UPE)

S1

eNB X2 NB NB NB NB

eNB

eNB

eNB eNB: E-UTRAN NodeB aGW: Access Gateway MME: Mobility Management Entity UPE: User Plane Entity

E-UTRAN

NB: NodeB (base station) RNC: Radio Network Controller SGSN: Serving GPRS Support Node GGSN: Gateway GPRS Support Node

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

10

LTE Network Architecture - cont.

GERAN

Gb Iu GPRS Core

SGSN

S7 S3 S4 S6 S5a S5b

3GPP Anchor

IASA

PCRF

Rx+

UTRAN

HSS

S1

Evolved RAN

MME UPE

SAE Anchor

SGi S2b

Op. IP Serv. (IMS, PSS, etc...)

S2a Evolved Packet Core Trusted non 3GPP IP A ccess

ePDG

WLAN 3GPP IP Access

WLAN Access NW

* 3GPP TR 23.882

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

11

LTE Network Architecture - cont.

EPC (Evolved Packet Core)

· eNB

­ All radio-related functions.

aGW (MME/UPE) aGW (MME/UPE)

· MME

­ Manage/store UE control plane context. ­ UE authentication. ­ Mobility management.

eNB S1

eNB X2

· UPE

­ Manage/store UE context. ­ Packet routing/forwarding.

eNB eNB

E-UTRAN

eNB: E-UTRAN NodeB aGW: Access Gateway MME: Mobility Management Entity UPE: User Plane Entity

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

12

LTE Network Architecture - cont.

eNB Inter Cell RRM Connection Mobility Cont. RB Control Radio Admission Control eNB Measurement Configuration & Provision

U-Plane Protocol Stack

C-Plane Protocol Stack

Dynamic Resource Allocation (Scheduler) RRC RLC MAC S1 PHY PDCP internet UPE MME

PDCP: Packet Data Convergence Protocol NAS: Non-Access Stratum * Details in 3GPP TS 36.300

E-UTRAN

aGW

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

13

PHY Layer Transport Channels

· DL transport channel types

­ ­ ­ ­ Broadcast Channel (BCH) Downlink Shared Channel (DL-SCH) Paging Channel (PCH) Multicast Channel (MCH)

· UL transport channel types

­ Uplink Shared Channel (UL-SCH) ­ Random Access Channel (RACH)

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

14

PHY Layer Model for Transport Channel

· Example: DL-SCH

Node B

Channel-state information, etc.

N Transport blocks (dynamic size S1..., SN)

ACK/NACK ACK/NACK HARQ info

UE

Error indications

HARQ

HARQ info

HARQ

CRC CRC

Coding + RM Coding + RM

Redundancy for error detection

CRC CRC

Coding + RM Decoding + RM

MAC scheduler

Redundancy version

Redundancy for data detection

Interleaving

Modulation scheme Resource/power assignment Antenna mapping

Interl.

Deinterleaving

QPSK, 16QAM, 64QAM

Interl.

Data modulation

Data modulation

Data modulation

Data demodulation RB mapping

RB mapping Resource mapping

Multi-antenna processing

Resource demapping

Antenna mapping

Antenna demapping

RM: Rate Matching UE: User Equipment (Mobile Terminal)

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

15

LTE Frame Structure

· Two radio frame structures defined.

­ Generic frame structure: FDD and TDD. ­ Alternative frame structure: TDD only.

· Generic radio frame has duration of 10 ms. It consists of 20 slots. A slot has a duration of 0.5 ms. 2 slots comprise a subframe. · A resource block (RB) spans 12 subcarriers over a slot duration of 0.5 ms. One subcarrier has bandwidth of 15 kHz.

One radio frame, Tf = 307200×Ts=10 ms One slot, Tslot = 15360×Ts = 0.5 ms #0 #1 #2 #3 #18 #19

* Ts = 1/(15000×2048) sec

One subframe

a.k.a. TTI (Transmission Time Interval) * Generic radio frame structure 16

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

LTE Layer 2

· Layer 2 has three sublayers

­ MAC (Medium Access Control) ­ RLC (Radio Link Control) ­ PDCP (Packet Data Convergence Protocol)

SAE Bearers ROHC PDCP Securtiy Security Radio Bearers Segm. ARQ Segm. ARQ Logical Channels Scheduling / Priority Handling ROHC

RLC

...

MAC

Multiplexing

HARQ Transport Channels

DL

ROHC: Robust Header Compression SAE: System Architecture Evolution

UL

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

17

MACMAC-Layer Logical Channels

· Control channels: Transfer of control-plane information.

­ Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH; only used for MBMS), Dedicated Control Channel (DCCH)

· Traffic channels: Transfer of user-plane information.

­ Dedicated Traffic Channel (DTCH) and Multicast Traffic Channel (MTCH; only used for MBMS).

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

18

RRC Layer

· Terminated in eNB on the network side. · Functions

­ ­ ­ ­ ­ ­ Broadcast Paging RRC connection management RB (Radio Bearer) management Mobility functions UE measurement reporting and control

· RRC states

­ RRC_IDLE ­ RRC_CONNECTED

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

19

MAC and RRC Control

MAC control Control entity Signalling L1/L2 control channel MAC MAC control PDU RRC control RRC RRC message

Signalling reliability

~ 10-2 (no retransmission)

~ 10-3 (after HARQ)

~ 10-6 (after ARQ)

Control delay Extensibility

Very short None or very limited No integrity protection No ciphering

Short Limited No integrity protection No ciphering

Longer High Integrity protected Ciphering (FFS)

Security

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

20

Resource Scheduling of Shared Channels

· Dynamic resource scheduler resides in eNB on MAC layer. · Radio resource assignment based on radio condition, traffic volume, and QoS requirements. · Radio resource assignment consists of:

­ Physical Resource Block (PRB) ­ Modulation and Coding Scheme (MCS)

Dynamic Fixed

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

21

Radio Resource Management

· Radio bearer control (RBC) · Radio admission control (RAC) · Connection mobility control (CMC) · Dynamic resource allocation (DRA) or packet scheduling (PS) · Inter-cell interference coordination (ICIC) · Load balancing (LB)

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

22

Other Features

· ARQ (RLC) and HARQ (MAC) · Mobility · Rate control · DRX (Discontinuous Reception) · MBMS · QoS · Security

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

23

Overview of 3GPP LTE LTE System Architecture

LTE DL PHY Layer (OFDMA)

LTE UL PHY Layer (SC-FDMA) LTE PHY Layer Procedures Summary and Conclusions

DL Overview

· DL physical channels

­ Physical Downlink Shared Channel (PDSCH) ­ Physical Downlink Control Channel (PDCCH) ­ Common Control Physical Channel (CCPCH)

· DL physical signals

­ Reference signal (RS) ­ Synchronization signal

· DL baseband signal generation

Scrambling Modulation Mapper Layer Mapper Scrambling Modulation Mapper Precoding OFDM Mapper OFDM signal generation OFDM Mapper OFDM signal generation

Related to MIMO transmission Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung 25

DL Slot Structure

One downlink slot, Tslot

One radio frame, Tf = 307200×Ts=10 ms One slot, Tslot = 15360×Ts = 0.5 ms #0 #1 #2 #3 #18 #19 One subframe

Transmission BW Slot duration Sub-carrier spacing Sampling frequency FFT size Number of occupied sub-carriers Number of OFDM symbols per sub frame (Short/Long CP)

1.25 MHz

2.5 MHz

5 MHz 0.5 ms 15 kHz

10 MHz

15 MHz

20 MHz

One resource block, NRB subcarriers BW

1.92 MHz

(1/2 × 3.84 MHz)

7.68 MHz 3.84 MHz 256 151

(2 × 3.84 MHz)

15.36 MHz

(4 × 3.84 MHz)

23.04 MHz

(6 × 3.84 MHz)

30.72 MHz

(8 × 3.84 MHz)

Resource element

NDL subcarriers BW

128 76

512 301

1024 601

1536 901

2048 1201

7/6

CP length

(s/sam ples)

Short

(4.69/9) × 6, (5.21/10) × 1* (16.67/32)

(4.69/18) × 6, (5.21/20) × 1 (16.67/64)

(4.69/36) × 6, (5.21/40) × 1 (16.67/128 )

(4.69/72) × 6, (5.21/80) × 1 (16.67/256 )

(4.69/108) × 6, (5.21/120) ×1 (16.67/384 )

(4.69/144) × 6, (5.21/160) ×1 (16.67/512 )

DL N symb

Long

OFDM symbols

* 3GPP TR 25.814

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

26

DL Reference Signal

One virtual antenna

R0 R0

*For generic frame with normal CP

R0

R0

R0

R0

R0

R0

l=0

l =6 l=0

l=6

Resource element (k, l )

Two virtual antennas

R0

R0

R1

R1

R0

R0

R1

R1

Not used for transmission on this antenna

R0

R0

R1

R1

Reference symbols on this antenna

R0

l=0

R0

l=6 l=0 l=6 l=0

R1

l=6 l=0

R1

l=6

R3 R2 R0 R0 R1 R1 R3 R2 R0 R0 R1 R1 R3 R2 R0 R0 R1 R1 R3 R2 R0 R0 R1 R1

Four virtual antennas

l=0

l =6 l=0

l=6

l=0

l=6 l=0

l=6

l=0

l=6 l=0

l=6

l=0

l=6 l=0

l=6

even-numbered slots

odd-numbered slots

even-numbered slots

odd-numbered slots

even-numbered slots

odd-numbered slots

even-numbered slots

odd-numbered slots

Antenna 0

Antenna 1

Antenna 2

Antenna 3

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

27

DL Reference Signal - cont.

· 2D RS sequence is generated as the symbol-by-symbol product of a 2D orthogonal sequence (OS) and a 2D pseudo -random sequence (PRS).

­ 3 different 2D OS and ~170 different PRS. ­ Each cell (sector) ID corresponds to a unique combination of on e OS and one PRS ~510 unique cell IDs.

· CDM of RS for cells (sectors)of the same eNodeB (BS)

­ Use complex orthogonal spreading codes.

· FDM of RS for each antenna in case of MIMO

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

28

DL MIMO

· Support up to 4x4 configuration. · Support for both spatial multiplexing (SM) and Tx diversity (TxD).

­ SM

· Unitary precoding based scheme with codebook based feedback from user. · Multiple codewords

­ TxD: SFBC/STBC, switched TxD, CDD (Cyclic Delay Diversity) considered.

· MU-MIMO supported.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

29

Basic Idea of Unitary Precoding

· Parallel decomposition of a MIMO channel

h11 h21 x1 x2

hNr 1

y1 y2

y1 h11 h1Nt = yN hN 1 hN N r t r r y = Hx+n

H = UDV H

=I

x1 x Nt

n1 + nN r

y = UDV H x + n

U H y = U HU DV H x + U H n

hNr Nt

yNr

U H y = DV H x + U H n

y x n

xN t

* Narrowband channel

y = Dx + n

30

I. E. Telatar, "Capacity of Multi-Antenna Gaussian Channels," Europ. Trans. Telecommu., vol. 10, Nov./Dec. 1999, pp. 585-595.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

Practical Unitary Precoding System

· For subcarrier k (total of M subcarrriers).

Xk

Unitary Precoding

^ X k = Vk X k

MIMO Channel Hk

Hk X k

^ Vk = F (Vk )

Nk

Yk

Receiver

Feedback Processing: F ()

(Averaging & quantization of Vk's)

Zk

^ ^ H k = (Estimation of H k ) = U k DkVkH , V = {Vk ; k = 0,..., M - 1} , V = Vk ; k = 0,..., M - 1

{

}

31

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

Overview of 3GPP LTE LTE System Architecture LTE DL PHY Layer (OFDMA)

LTE UL PHY Layer (SC-FDMA)

LTE PHY Layer Procedures Summary and Conclusions

Single Carrier FDMA

· What is Single Carrier FDMA (SC-FDMA)?

­ Utilizes single carrier modulation and frequency domain equalization. ­ Has similar performance and essentially the same overall structur e as those of OFDMA system. Also, referred to as DFT-spread OFDMA. ­ Has low PAPR because of its inherent single carrier transmitter structure. ­ An attractive alternative to OFDMA, especially in the uplink communications where lower PAPR greatly benefits the mobile terminal in terms of transmit power efficiency.

· For more technical information, a tutorial is available at http://hgmyung.googlepages.com/scfdma .

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

33

UL Overview

· UL physical channels

­ Physical Uplink Shared Channel (PUSCH) ­ Physical Uplink Control Channel (PUCCH)

· UL physical signals

­ Reference signal (RS) ­ Random access preamble

#0 #1

One radio frame, Tf = 307200×Ts=10 ms One slot, Tslot = 15360×Ts = 0.5 ms #2 #3 #18 #19

One subframe

1 slot = 0.5 ms

CP CP CP CP CP

LB #0

LB #1

LB #2

LB #3

CP

LB #4

LB #5

CP

LB #6

Used for RS

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

34

UL Signal Generation

Modulation mapper SC-FDMA mapper SC-FDMA signal gen.

Scrambling

Subcarrier Mapping Zeros M-1 subcarrier

{ x0 , x1 ... , xN -1}

Serial-toParallel

Npoint DFT

Mpoint IDFT

Parallel-toSerial

{ x0 , x1 ... , xM -1}

One Block

0

Zeros

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

35

UL Transmission Parameters

Bandwidth (MHz) Slot duration (ms) LB size (µs/# of µ occupied subcarriers /FFT size) 66.67/1200/2048 SB size (µs/# of µ occupied subcarriers /FFT size) 33.33/600/1024 CP duration (µs/# of subcarriers) µ (4.13/127) or (4.39/135) (4.12/95) or (4.47/103) (4.1/63) or (4.62/71) (4.04/31) or (5.08/39) (3.91/15) or (5.99/23) (3.65/7) or (7.81/15)

20

0.5

15

0.5

66.67/900/1536

33.33/450/768

10

0.5

66.67/600/1024

33.33/300/512

5

0.5

66.67/300/512

33.33/150/256

2.5

0.5

66.67/150/256

33.33/75/128

1.25

* 3GPP TR 25.814

0.5

66.67/75/128

33.33/38/64

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

36

UL Reference Signal

· Two types of UL RS

­ Demodulation (DM) RS Narrowband. ­ Sounding RS: Used for UL resource scheduling Broadband.

· RS based on Zadoff-Chu CAZAC (Constant Amplitude Zero Auto-Correlation) polyphase sequence

­ CAZAC sequence: Constant amplitude, zero circular autocorrelation, flat frequency response, and low circular crosscorrelation between two different sequences.

- j 2 r k 2 +qk , L 2 e ak = r k ( k +1) - j 2 L 2 +qk e

k =0,1,2,, L -1; for L even

* r is any integer relatively prime with L and q is any integer.

, k = 0,1,2,, L -1; for L odd

B. M. Popovic, "Generalized Chirp-like Polyphase Sequences with Optimal Correlation Properties," IEEE Trans. Info. Theory, vol. 38, Jul. 1992, pp. 1406-1409. Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung 37

UL RS Multiplexing

User 1 User 2 User 3 subcarriers FDM Pilots subcarriers CDM Pilots

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

38

UL RS Multiplexing - cont.

· DM RS

­ For SIMO: FDM between different users. ­ For SU-MIMO: CDM between RS from each antenna ­ For MU-MIMO: CDM between RS from each antenna

· Sounding RS

­ CDM when there is only one sounding bandwidth. ­ CDM/FDM when there are multiple sounding bandwidths.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

39

Overview of 3GPP LTE LTE System Architecture LTE DL PHY Layer (OFDMA) LTE UL PHY Layer (SC-FDMA)

LTE PHY Layer Procedures

Summary and Conclusions

Cell Search

· Cell search: Mobile terminal or user equipment (UE) acquires time and frequency synchronization with a cell and detects the cell ID of that cell.

­ Based on BCH (Broadcast Channel) signal and hierarchical SCH (Synchronization Channel) signals.

· P-SCH (Primary-SCH) and S-SCH (Secondary-SCH) are transmitt ed twice per radio frame (10 ms) for FDD. · Cell search procedure

1. 2. 3. 4. 5 ms timing identified using P-SCH. Radio timing and group ID found from S-SCH. Full cell ID found from DL RS. Decode BCH.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

41

Cell Search - cont.

Example: 10-MHz UE in 20-MHz cell site, SCH bandwidth = 1.25 MHz and BCH bandwidth = 1.25 MHz Cell site with 20-MHz transmission bandwidth Center carrier frequency

Step 1: Cell search using synchronization channel detect center 1.25 spectrum of entire 20-MHz spectrum Step 2: BCH reception BCH reception

BCH SCH

Step 3: UE shifts to the center carrier frequency assigned by the system and initiates data transmission

Initiate data transmission using assigned spectrum

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

42

Random Access

· Non-synchronized random access. · Open loop power controlled with power ramping similar to WCDMA. · RACH signal bandwidth: 1.08 MHz (6 RBs) · Preamble based on CAZAC sequence.

RA slot = 1 ms TCP TGP

1 UE eNB

Random Access Preamble

Random Access Response

2

CP

* TCP = 0.1 ms, TGP = 0.1 ms

Preamble

3

Scheduled Transmission

Contention Resolution

4

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

43

Other Procedures

· Synchronization procedures

­ Radio link monitoring ­ Inter-Cell synchronization for MBMS ­ Transmission timing adjustments

· Power control for DL and UL · UE procedure for CQI (Channel Quality Indication) reporting · UE procedure for MIMO feedback reporting · UE sounding procedure

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

44

Overview of 3GPP LTE LTE System Architecture LTE DL PHY Layer (OFDMA) LTE UL PHY Layer (SC-FDMA) LTE PHY Layer Procedures

Summary and Conclusions

Summary and Conclusions

· On-going standardization in the form of 3GPP Release 8.

­ Spec by the end of 2007/early 2008 and target deployment in 2010.

· LTE air-interface.

­ Downlink: OFDMA ­ Uplink: SC-FDMA

· Support for both FDD and TDD. · Flexible spectrum allocation (1.25 ~ 20 MHz). · Advanced MIMO system.

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

46

References and Resources

· http://hgmyung.googlepages.com/scfdma

­ LTE & SC-FDMA references

· LTE and SC-FDMA

­ H. Ekström et al., "Technical Solutions for the 3G Long-Term Evolution," IEEE Commun. Mag., vol. 44, no. 3, March 2006, pp. 38­45 ­ H. G. Myung et al., "Single Carrier FDMA Technique for Uplink Wireless Transmission," IEEE Vehicular Technology Magazine, Sep. 2006 ­ H. G. Myung, "Single Carrier Orthogonal Multiple Access Technique for Broadband Wireless Communications," PhD Dissertation, Polytechnic University

· 3GPP LTE Activities

­ http://www.3gpp.org/tb/home.htm

· RAN WG1: Layer 1 · RAN WG2: Layer 2 & 3

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

47

References and Resources - cont.

· 3GPP Release 8 Spec

­ http://www.3gpp.org/ftp/Specs/html-info/36-series.htm

· · · · · · · 36.201: Physical layer; General description 36.211: Physical Channels and Modulation 36.212: Multiplexing and channel coding 36.213: Physical layer procedures 36.214: Physical layer; Measurements 36.300: E-UTRA and E-UTRAN; Overall description (layer 2&3 info) 36.401: E-UTRAN; Architecture description

­ http://www.3gpp.org/ftp/Specs/html-info/25814.htm (old)

· 3GPP LTE Layer 1 Contribution Papers (Tdoc)

­ http://www.3gpp.org/ftp/Specs/html-info/Meetings-R1.htm

Technical Overview of 3GPP LTE | Feb. 8, 07 | Hyung G. Myung

48

Information

Technical Overview of 3GPP LTE

49 pages

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

800447