Read SPECIFIC TASK TRAINING PROGRAM 2001 handout text version

ILLINOIS DEPARTMENT OF TRANSPORTATION

SPECIFIC TASK TRAINING PROGRAM

PILING

S 19

CLASS REFERENCE GUIDE

BY: Bureau of Construction Bureau of Bridges and Structures

INSTRUCTORS: Justan Mann (217) 782-5283 [email protected] Brad Hessing (217) 557-8239 [email protected]

Revised February 2009

SPECIFIC TASK TRAINING PROGRAM PILING COURSE OBJECTIVE The student will be able to do the following: 1. Inspect piling for conformance with plans and specifications. 2. Inspect test piling installations. 3. Inspect pile driving operation to insure attainment of the Nominal Required Bearing and conformance with plans and specification. 4. Inspect pile splicing operation for conformance with specifications. 5. Properly record field data for documentation of the following pay items: a. Furnishing piling b. Driving piling c. Test Piles d. Pile Shoes 6. Properly record field data for documentation of extra work involved in making Unplanned pile splices. PROBLEMS CONSIDERED BY THIS COURSE 1. Determining maximum and minimum energy requirements for hammers. 2. Determining maximum and minimum blow count requirements. 3. Proper pile layout within substructure or footing. 4. Field methods used to determine energy and blow count. 5. Safety around pile driving operations. 6. Proper alignment. 7. Pile damage. 8. Splice requirements for Steel H, Metal Shell, Precast, and Timber piles. 9. Attaining correct Nominal Driven Bearing.

PILING INDEX

Pages Piling Inspector's Checklist Class Notes Hammer Energy Requirements Driving Formula Energy Reduction Coefficient for Battered Piles Test Piles Driving Tolerances Splicing Pile Inspector Field book Examples Hammer Energy Calculations A ­ Single Acting Diesel Hammer Steel HP B ­ Single Acting Air/Steam Hammer Metal Shell Pile C ­ Energy Reduction Coefficient for Battered Piles Class Problems 1 ­ Single Acting Air/Steam Hammer Metal Shell Pile 2 ­ Single Acting Diesel Hammer H-Pile 3 ­ Determining Pay Quantities Materials Inspection Requirements Example Forms BBS 757 ­ Test Pile Driving Record Letter of Furnished lengths to Contractor Field Documentation BBS 2184 ­ Production Pile Driving Data Section 512 of the Construction Manual 512.07 - Welding 512.08 - Storage and Handling 512.09 - Preparation for Driving 512.10 ­ Driving Piles 512.11 ­ Penetration of Piles 512.14 ­ Determination of Nominal Driven Bearing 512.15 Test Piles Pile Driving Information Submittals Hammer Energy Reduction Coefficients for Batter Piles Pile Hammer Data ­ English Metric Example Energy and RNDB Calculations A ­ Single Acting Diesel Hammer ­ H-Pile B ­ Air/Steam Hammer ­ Precast Concrete Pile C ­ Drop Hammer ­ Timber Pile (& Battered) D ­ Double-Acting Diesel - Hammer Metal Shell Pile Appendix: H-Pile; Metal Shell Pile; Precast Concrete Pile Welding Symbols Example Certified Mill Test Report Example Pile Layout Lifting Hole Size and Location Pile and Driving Equipment Data 75 ­ 77 78 - 79 80 81 82 83 1 ­ 10

11 ­ 39 16 16 17 18 19 20 21

22 25 28 30 32 34 35 38 39 40 41 42 ­ 62 42 42 43 43 45 46 46 47 48 50 52 54 57 59 63

Dec 4, 2007 Reformatted For Class Manual

Piling

State of Illinois Department of Transportation CONSTRUCTION INSPECTOR'S CHECKLIST FOR PILING This checklist has been prepared to provide for the field inspector a summary of easy-to-read stepby-step requirements for the installation and inspection of foundation piling (Section 512). The following questions are based on the requirements found in the Standard and Supplemental Specifications, Highway Standards and appropriate sections of the Construction Manual. 1. PLAN AND SPECIFICATION REVIEW Prior to starting work on an item, have you checked the contract Special Provisions and plans to see if any changes or modifications have been made to the Standard and Supplemental Specifications? ____ On bridge construction and reconstruction contracts have you checked the proposed or existing span lengths prior to starting work? (The contract may make this the responsibility of the Contractor.) ____ On bridge construction and reconstruction contracts have you checked the existing or proposed vertical or horizontal clearances? ____ Prior to the start of construction, have you checked the plan elevations of the bottom of footings, intermediate substructure components and bearing seat elevations of abutments and piers to ensure they correspond to the appropriate top of deck elevations and dimensions shown on the superstructure plans? ____ Have you reviewed the appropriate sections of the Construction Manual (Structures), Documentation Section, Project Procedures Guide and Forms? ____

Has the structure been surveyed to establish the baseline of the structure, bearing lines of piers and backs of abutments? Has an independent check of your calculations and layout been performed before the Contractor starts work? (Construction Manual Survey Section) ____ 2. DETERMINE HAMMER ENERGY REQUIREMENTS Has the contractor provided you with the data and necessary correlation charts for determining the energy "E" developed by the hammer per blow for the pile hammer proposed for driving piles? ____ If the contract indicates a Wave Equation analysis will be used to drive the project piles, have you submitted the contractor's analysis to central Bureau of Bridges and Structures for their review and approval? ____

1

Jan 7, 2008 Reformatted For Class Manual

Piling

If the plans do not indicate a WAVE Equation analysis is required, and RN<600kips Does the hammer meet the following energy requirements: A. Minimum Hammer Energy: E> 0.082 x [RN +100]2 (English) B. Maximum Hammer Energy: E< 0.193 x [RN +100]2 (English) E< 0.012 x [RN +550]2 (metric) E> 0.005 x [RN +550]2 (metric) ____

Where: RN = Nominal Required bearing in kips (kN) E = Energy developed by the hammer per blow in ft-lbs. (J) Additional Hammer Requirements (by Hammer type): Air/Steam Hammers Is the total weight of the striking parts least 1.4 tons (1.3 metric tons) and not less than 1/3 the weight (mass) of the Pile and drive cap? ____ Diesel Hammers Is the hammers either equipped with a device to measure ram impact velocity or speed of operation (with the necessary correlation charts) or designed such that the stroke height can be directly observed?

____

If the hammer is closed-end (double acting) is it equipped with a bounce chamber pressure gauge that is easily readable? ____ Has the Contractor shall provided the correlation chart and hammer data to determine the energy developed by the hammer with each blow? Drop hammers Shall not be used for driving: Precast and Precast Prestressed Concrete Piles. Piles with a Nominal Required Bearing (RN) > 120 kips (533kN) Is the hammer ram weight (mass) at least 1 ton (0.9 metric tons)? ____ ____

Is the Ram weight at least equal to the combined weight of the pile and drive cap? ____ Does the fall of the ram not exceed 15 ft. (4.6 m)? Hydraulic hammers: Is the hammer equipped with an energy reading device? ____ ____

Has the contractor provided a wave equation analysis for the proposed hammer? (The modified Gates formula is NOT acceptable) ____

2

Jan 7, 2008 Reformatted For Class Manual

Piling

3.

DETERMINE THE NUMBER OF REQUIRED HAMMER BLOWS Have you determined minimum number of blows/inch (blows/25mm) "Nb", to obtain a Nominal Driven Bearing (RNDB) of the pile equal to or exceeding the Nominal Required Bearing (RN) shown on the plans? ____

R N 100

R N 550

Nb

Where:

10

1.75 E

10

(English)

Nb

10

7 E

10

(Metric)

RN is the Nominal Required Bearing in kips (kN) E is the Energy developed by the hammer per Blow in Ft-lbs (J) Nb is the number of hammer blows per inch (25mm) of pile penetration 4. TEST PILES When test piles are specified, are the following requirements being met: a. Location. Are the test piles being located at the substructure foundation designated in the plans? ____

Within the designated substructure foundation, are you locating the test pile as far as possible away from the nearest soil boring? ____ Are Test piles driven in a production location cut off as production piles? ____

Are Steel test piles driven in a production location painted when painting is specified for the production steel piles? ____ Are Test piles not driven as production piles cutoff or pulled as directed by the Engineer? (512.15) ____ b. Driving Elevation. Has the excavation or embankment placement at the test pile location been completed to an elevation within 60 mm (2 ft) of the plan bottom of footing or plan pre-core elevation? (512.15) ____ Pile Material. Is the test pile the same material and size as specified for the production piles? (512.15) ____ If pile shoes are specified for the production piles, is the test pile driven with the required pile shoe? ____ d. e. Length. Is the test pile at least 10 ft (3 m) longer than the estimated length of the production piles shown on the plans? (512.15) ____ Hammer. Is the hammer proposed to drive the test pile the same hammer that will be used to drive the production pile? (512.15) ____

c.

3

Jan 7, 2008 Reformatted For Class Manual

Piling

f. g.

Notification. Are you notifying the District Office prior to driving the test pile?

____

Bearing. Are all test piles being driven to a Nominal Driven Bearing (RNDB) = 1.1 x Nominal Required Bearing (RN) shown on the plans? (512.15) ____ Are all Nominal Driven Bearing (RNDB) being determined by the appropriate formula (modified Gates or Wave)? (512.14) ____ Are all Production Pile Nominal Driven Bearings (RNDB) > the Nominal Required Bearing (RN) indicated on the plans? (512.11(a)) ____

Does the pile penetrate to at least the minimum pile tip elevation specified, or if none is specified, at least 3 m (10 ft) below the bottom of footing elevation or 3 m (10 ft) below undisturbed earth? (512.11(b)) ____ h. Records. Are the test piles marked off in 1 ft (300 mm) increments and the blows/inch recorded over each 1 ft (300 mm) on Form BBS 757, Test Pile Driving Record? (512.15) ____ Length Determination. Are the lengths of the production piles being determined from an analysis of the test pile data boring data and estimated plan lengths? ____ Have you given the Contractor a written itemized list of pile lengths to be furnished? (512.16) Is a copy of this list being retained in the contract documentation files? Are you preparing and sending a copy of the BBS 757 to BBS? ____ ____ ____

i.

j. k. k. 5.

STORAGE AND HANDLING a. Timber Piles. Are the treated timber piles stored at the site of the work in accordance with the requirements of 1007.13 and handled in accordance with Articles 507.05 and 1007.13? (512.08(a)) Are the piles being stored off the ground on solid timbers of size and so arranged as to support treated materials without producing noticeable distortion and not subjected to standing water? (1007.13/AWPA Std M4)

____

____

Are the piles being handled with rope slings and in accordance with Article 507.05(a) and 1007.13? (512.08(a)) ____ b. Precast Concrete Piles. Are precast and precast prestressed concrete piles being lifted and stored at the bridle points shown on the precast shop plans? 512.08(b) ____ Steel piles. Are steel H-piles being supported on skids or other supports sufficiently spaced to keep the piles clean and free from injury? (512.08)(c)/505.08(c) & Construction Manual Section 512.10)

c.

____

4

Jan 7, 2008 Reformatted For Class Manual

Piling

d.

Metal Shell Piles. Are metal shell piles being stored off the ground and in a manner to prevent dirt, water or other foreign material from entering the shell? (512.08(d)) ____ Are metal shell piles being stored on sufficient wood cribbing to prevent bending, distortion or other damage to the shell? (512.08(d)) ____

6.

PREPARATION FOR DRIVING a. b. c. d. e. Prior to the start of driving piling, has the footing been excavated to grade? (512.09) ____ Have cross sections been taken to determine pay quantities for structure excavation? Have the pile locations been staked and checked? Has the entire length of all Precast Concrete Piles been kept saturated at least six hours prior to driving? (512.09(b)) If pre-coring of the embankment is specified on the plans, has the contractor pre-cored to the required depth and diameter shown on the plans? ____ ____ ____

____

7.

PILING DOCUMENTATION Are you preparing a field book or other record so that a permanent record can be made of the following: (Construction Manual Section 512.11) ____ a. b. c. d. e. f. A numbered diagram of the location of piles in each substructure location. ____ The authorized length to be furnished as per the written itemized list provided to the Contractor. The actual measured length of each piling delivered. The actual measured length of each cutoff The length driven (length of pile furnished-- cutoff length) The hammer blows per inch (25 mm) "Nb", Hammer energy "E" imparted and corresponding calculated Nominal Driven Bearing (RNDB) at the final bearing. ____ ____ ____ ____

____

8.

MATERIAL INSPECTION a. b. c. Have you inspected all piling to see if they have been approved prior to shipment? (Construction Manual Section 512.08 & PPG) Are you inspecting piling delivered for possible damage in transit? ____ ____

If pile shoes are specified, do they meet the requirements of (512.05(c)) & 1006.05(e)? ____

5

Jan 7, 2008 Reformatted For Class Manual

Piling

9.

EQUIPMENT a. b. Drive Head. Are the heads of all piles being protected with a suitable driving head? (512.10(b)) Pile Cushion. Are the heads of all Timber, Precast Concrete and Precast Prestressed Concrete piles being protected by a Pile cushion? Is the thickness of the Pile head cushion at least 3 inches (75mm)? ____ ____ ____

Are you requiring the contractor to replace the cushion when it compresses to less than 60% of its original thickness or begins to burn? ____ c. Hammer Cushion. Are you inspecting the Hammer cushion, when one is required by the manufacturer prior to driving and after each 50 hours of operation?

____

Is the hammer cushion being replaced when it is reduced to less than 75% of its original thickness? ____ d. Leads. Is the pile and hammer being held in accurate alignment with pile leads? (512.10(d)) If swinging leads are used, are they firmly toed into the ground prior to starting the pile driving operation? e. ____ ____

Followers. If the contractor requests permission to use a follower to drive pile, have you agreed to its use in writing? ____ Is the first pile in every group of ten being driven without a follower and the data from that pile used to determine the average Nominal Driven Bearing (RNDB) of the other piles in the group? ____

f.

Jets. If jets are proposed, have you approved their use?

____

Following termination of use of jets in a substructure unit, are you further driving each pile in that unit to ensure the Nominal Driven Bearing (RNDB) is equal to or greater than the Nominal Required Bearing (RN)? ____ 10. TOLERANCES IN DRIVING a. b. Are foundation piles being driven with a variation from the vertical or required batter alignment of not more than 1/4 in./ft (20 mm/m). (512.12) ____

Are piles driven such that no visible portion of the pile is more than 6 inches (150mm) out of plan position, when such alignment does not require a design modification and forcing in to this position does not result in injury to the pile?.(512.12) ____

6

Jan 7, 2008 Reformatted For Class Manual

Piling

11.

PENETRATION REQUIREMENTS a. Are you observing the hammer blows per inch (25mm) to ensure the piling is driven to a Nominal Driven Bearing (RNDB) equal to or larger than the Nominal Required Bearing (RN) shown on the plans? ____ If the pile has not achieved Nominal Required Bearing (RN) at the full furnished length, but has achieved at least 85% of RN, are you allowing the pile to set for at least 24 hours to achieve soil setup before splicing and driving and additional length? (512.11) ____ When checking the Nominal Driven Bearing (RNDB) for soil setup, before setting back on the pile, has the hammer been warmed up by applying at least 20 blows to another pile? Has Nominal Driven Bearing been determined by driving the pile over an additional 3 inch (75mm) distance? c.

b.

____ ____

When a minimum tip elevation is shown on the plans, is the penetration of all foundation piles below the minimum tip elevation? (512.11) ____ When a minimum tip elevation is not shown on the plans are the piles being driven to a penetration at least 10 ft (3 m) below the bottom of footing or into undisturbed earth, whichever is greater? (512.11) ____ Note: When driving timber piles, if you are having problems achieving this penetration, are you asking the Contractor to point the timber piles, or allowing water and/or air jets (512.10(f)) in combination with the hammer?

d.

Are you checking that piles in stream beds or on banks of streams, where erosion or scour is expected (as shown on the scour table shown on the plans) that the pile tip penetrates to the minimum tip elevation shown on the plans, or well below the scour elevation shown? ____

12.

FIELD SPLICING OF PILES When it becomes necessary to splice onto a partially driven pile because it has become damaged in driving or because Nominal Required Bearing (RN) shown on the plans has not yet been reached, is the splice being performed in accordance with the plan details and the following? ____ a. Precast or Precast Prestressed Concrete Piles. NO splices are allowed in Precast or Precast Prestressed Concrete Piles. ____ If an extension is required, it should be constructed as shown on the plans. (Pile is NOT redriven following constructing the extension) (512.03(c)) ____ If the Nominal Required Bearing (RN) cannot be achieved, have you notified your supervisor to contact the Bureau of Bridges and Structures for further instructions? ____ b. Metal Shell Piles.

7

Jan 7, 2008 Reformatted For Class Manual

Piling

Planned Splice: Is the Minimum length of each segment at least 20 ft (6 m) long? (512.04(a)(1)) Unplanned Splice: Is the minimum length at least 10 ft (3 m) long? (512.04(a)(2))

____ ____

Is the Splice being accomplished by: 1. a Complete Joint Penetration (CJP) weld of the entire cross-section; or 2. use of a commercial splicer with a Department approved commercial splicer welding detail? ____ Is the welder making the splice qualified by test in accordance with the qualification requirements of the American Welding Society (AWS) Standard Specifications (Certification by independent test laboratory required). (512.07) ____ c. Steel "H" Piles. Planned Splice: Is the Minimum length of each segment at least 20 ft (6 m) long? (512.04(a)(1)) Unplanned Splice: Is the minimum length at least 10 ft (3 m) long? (512.04(a)(2)) Is the splice being accomplished by: 1. a Complete Joint Penetration (CJP) weld of the entire cross-section; 2. the Department's standard steel pile field splices; or 3. use of a commercial splicer with a Department approved commercial splicer welding detail?

____ ____

____

Is the welder making the splice qualified by test in accordance with the qualification requirements of the American Welding Society (AWS) Standard Specifications (Certification by independent test laboratory required). (512.07) ____ d. Timber Piles. Planned splicing of timber pile is NOT allowed. For an unplanned splice, is the added piece cut flush with and attached to the main pile with the use of at least 4 steel plates or a metal pipe sleeve. (512.06)

____

13.

PILE CUTOFFS a. b. Are you marking each pile at the cutoff elevation so that the Contractor can cut them off square (perpendicular) to the axis of the pile? (512.13) ____ Once you determine that the pile cutoffs will not be needed as splices for any of the other production piles, are you informing the Contractor that the cutoffs are theirs and are to be disposed of at no additional expense to the State? (512.13) ____

14.

INSPECTION OF METAL SHELL PILES AFTER DRIVING a. Are you inspecting the interior of all driven metal shell piles for bends or other deformations that would impair the strength of the pile with a Contractor-supplied lamp or mirror? (512.04(c))

____

8

Jan 7, 2008 Reformatted For Class Manual

Piling

b.

After you have inspected and approved the metal shell piles, is the Contractor temporarily sealing the top of the metal shell piles to prevent the entrance of water or foreign substance? (512.04(c)) ____

15.

FILLING METAL SHELL PILES WITH CONCRETE a. If all piles in a bent, pier or abutment cannot be driven before any concrete is placed in the metal shell piles, is driving of the additional piles within 15 feet (4.5 m) being deferred until the concrete in the metal shell piles within this zone is at least 24 hours old? (512.04(b)) ____ If reinforcement is specified on the plans, is the reinforcement rigidly fastened together and lowered into the shell before placing concrete? Are spacers used to maintain the proper clearance into the top of the piles? (512.04(d)) ____ Just prior to filling metal shell piles with Class DS Concrete, are you inspecting the interior with a mirror or lantern to be sure that all water and foreign substance has been removed? (512.04(e)) ____ When filling the metal shell piles with concrete, is the top 10 feet (3 meters) of concrete being consolidated with internal vibration? (512.04(e)) ____

b.

c.

d. 16.

BACKFILLING PRECORED HOLES Are all pre-cored holes being backfilled with loose, dry sand after the piles are driven? (512.09(c)) ____

17.

PILING DIAGRAM Is a BBS 2184 being prepared for each substructure/footing for submittal to BBS? (CM 512.11) ____ Have you included a diagram numbering the piles driven and indicating their locations and any deviations from plan locations?. ____

18.

DOCUMENTATION OF FINAL CONTRACT QUANTITIES TEST PILES - Each PILE SHOES - Each Shall be paid for at the contract unit price each. Enter in Quantity Book by date and location. FURNISHING PILES (Of the various types and sizes specified) - Foot (Meter) Payment will be made for the total lineal feet (meters) of all piles delivered to the work in accordance with the written itemized list of furnished lengths provided by the Engineer. Field measurements of the delivered lengths must be on record. ____

____

If cutoffs are used in splicing on additional lengths, no extra length compensation will be allowed. ____

9

Jan 7, 2008 Reformatted For Class Manual

Piling

Other authorized field additions or "build-ups" will be allowed for payment. DRIVING PILES - Foot (Meter)

____

Payment will be made for the total lineal feet (meters) of all piles left in place below cutoff elevation. Field measurements must be on record. ____ Authorized, unplanned splices will be paid for as extra work in accordance with Article 109.04. Use Form BC 635 to document this work. Revised to conform with the Standard Specifications for Road and Bridge Construction

Adopted January 1, 2007 Including Supplemental Specifications and Errata adopted January 1, 2008

____

10

PILING CLASS NOTES

1.

PURPOSE OF PILE - TO TRANSFER A STRUCTURE LOAD TO SUBSURFACE SOILS OR ROCK.

2.

GENERAL TYPES OF PILE SUPPORT:

A.

FRICTION PILES - BEARING IS DERIVED FROM PRIMARILY SKIN FRICTION BETWEEN PILE AND ADJACENT SOIL.

B.

END BEARING PILES - BEARING IS DERIVED PRIMARILY FROM SOIL OR ROCK BELOW THE TIP OF PILE.

FRICTION PILE

END BEARING PILE

F = 80% - 100%

F = 0% - 20%

P = 0% - 20%

P = 80 % - 100%

11

3. TYPES OF FRICTION PILE: A. PRECAST OR PRECAST/ PRESTRESSED CONCRETE B. METAL SHELL C. STEEL H-PILE D. TIMBER

4. TYPES OF END BEARING PILE:

STEEL H-PILE

5. PILE HAMMERS ARE USED TO DRIVE PILES TO A PREDETERMINED BEARING.

12

6. PILE DRIVING EQUIPMENT CONSISTS OF:

A. HAMMER B. DRIVE HEAD C. CUSHIONS Hammer Pile D. LEADS E. FOLLOWER ­ Special Case F. JETS

7. TYPES OF PILE HAMMERS :

A. DROP (GRAVITY) B. AIR/STEAM (1) SINGLE ACTING (2) DOUBLE ACTING C. DIESEL (1) SINGLE ACTING (2) DOUBLE ACTING D. HYDRAULIC E. VIBRATORY

13

8. HAMMER'S ABILITY TO DRIVE PILE IS BASED ON ITS ENERGY (E).

A.

Single Acting or Drop (Gravity) Hammer

E=WH

Explosion of Diesel fuel, introduction of compressed air, or winch lifts the ram and allows it to fall to strike the pile. Energy varies with Height of Fall ­ which must be monitored and recorded to determine nominal driven bearing for the pile Blow count must be calculated for various fall heights prior to driving the pile. B. Double Acting or Hydraulic Hammer: E = From Manufacturer Closed end ­ Delivered energy combination of weight of hammer and height of fall + added energy form either second explosion or air compressed during hammer upstroke. Requires Manufacturer's correlation chart to determine developed Energy Additional Requirements for specific hammer types: 1. Drop (Gravity) Hammer Cannot be used for Precast Piles Cannot be used for piles with Nominal Required Bearing >120 kips Hammer Ram weight must be at least as great as the combined weight of the pile and drive cap; AND Not less than 1 ton (0.9 metric ton) 2. Air/Steam Hammers Weight of striking parts of hammer must be > 1/3 weight of pile and drive cap, AND Not less than 1.4 tons (1.3 metric tons)

A good, up-to date, comprehensive collection of basic hammer information (Make/Model, type, W, H, and E) is available at:

web.pile.com/pdi/products/grlweap/hammers.asp

14

9. Units used to calculate Pile Driving Requirements.

ENGLISH

METRIC

RN (Nominal Required Bearing) = RNDB (Nominal Driven Bearing) =

Thousand Pounds (kips) Thousand Pounds (kips)

KiloNewton (kN) KiloNewton (kN) Joules (J) Millimeter (mm) KiloNewton (kN) Blows/25mm

E = (Energy developed by Hammer) = Foot-pounds Ft-lbs) H = (Height of Hammer Stroke) = Feet (Ft) Pounds (Lbs) Blows/inch

W = (Weight of Ram) =

Nb = (Number of Hammer blows) =

15

HAMMER ENERGY REQUIREMENTS

Hammer must be operated at an energy which will maintain a pile penetration rate between 2 and 10 blows per inch (25mm) when the Nominal Driven Bearing approaches the Nominal Required Bearing. To determine the required hammer energy range, the following equations should be used: English Units Minimum: E > 0.082 x [RN + 100]2 Maximum E < 0.193 x [RN + 100]2 RN E Metric Units E > 0.005 x [RN + 550]2

E < 0.012 x [RN + 550]2

= Nominal Required Bearing of the pile in kips (kN) = Energy developed by the hammer per blow in ft-lbs (J)

DRIVING FORMULAS

RNDB 1.75 E Log (10 Nb ) 100 (English)

RNDB

7 E Log (10 Nb) 550 (Metric)

Where RNDB = Nominal Driven Bearing of the pile observed in the field in kips (kN) Nb = Number of Hammer blows per inch (25mm) of pile penetration E = Energy developed by the hammer observed in the field per blow in ft-lbs (J)

16

Hammer Energy Reduction for Battered Piles

Vertical Pile Batter Pile

E

E= E (plumb)

E (plumb)

Where

= Batter Angle (from vertical) in degrees E = Energy delivered axially to the pile E (plumb) = Standard Calculated Hammer Energy (vertical)

To determine the energy delivered by the hammer to the pile on the batter Determine the Hammer Energy Reduction coefficient given by: Drop Hammers

U=

[0.25(4 - m)] (1 + m2 )

All Other Hammers

U=

[ 0.1 ( 10 - m)]

( 1+ m )

2

Where U for is a factor to account for the hammer energy loss due to the inclination of the hammer m = tan (Tangent of Batter Angle) Calculate E (delivered by the hammer on a pile at a given batter

E = U * E(plumb)

NOTE: If the hammer has internal ram velocity monitoring, no hammer energy loss reductions "U" should be used. Because the measured impact velocity is used to control the nominal energy delivered to the pile, losses are internally corrected by the hammer operating system.

17

TEST PILES REQUIREMENTS

1. PILE MUST BE AT LEAST 10 FT LONGER THAN ESTIMATED LENGTH SHOWN IN THE PLANS 2. DRIVE TEST PILES TO 10% OVER NOMINAL REQUIRED BEARING SHOWN IN THE PLANS 3. DRIVE TEST PILES WITH SAME EQUIPMENT AS PRODUCTION PILES 4. EXCAVATE OR CONSTRUCT EMBANKMENT TO WITHIN 2 FT OF BOTTOM OF FOOTING OR SUBSTRUCTURE ELEVATION 5. DETERMINE PRODUCTION PILE LENGTHS FROM TEST PILE RESULTS. 6. PROVIDE A LETTER TO THE CONTRACTOR WITH A LIST OF AUTHORIZED FURNISHED LENGTHS FOR PRODUCTION PILES.

FIELD PROCEDURE

1. LOCATE TEST PILE AS FAR AS POSSIBLE FROM BORING LOCATION. 2. MEASURE TEST PILE 3. MARK OFF PILE IN ONE FOOT INCREMENTS 4. ESTABLISH REFERENCE ELEVATION FOR USE WHILE DRIVING PILE 5. RECORD AVERAGE BLOWS PER INCH FOR EACH FOOT OF PENETRATION 6. SHOOT PILE CUT-OFF ELEVATION 7. PLOT DRIVING RECORD (NOMINAL DRIVEN BEARING vs. DEPTH) AND COMPARE TO BORING LOG

18

TOLERANCE IN DRIVING 1. 1/4 IN / FT (20mm/m) from plumb or required batter. 2. Visible portion of the pile as driven shall be within 6 inches (150mm) of plan position IF such tolerance will not require a modification to the design and bringing into this tolerance will not damage the pile. PENETRATION OF PILES 1. Pile shall be installed to a penetration such that the Nominal Driven Bearing is not less than the Nominal Required Bearing shown on the plans. 2. Pile tip elevation must be at or below the minimum tip elevation shown on the plans. 3. When no minimum tip elevation is specified, piles must penetrate at least 10 feet below the bottom of the footing or into undisturbed earth, whichever is greater. 4. When a pile fails to achieve a Nominal Driven Bearing at least as great as the Nominal Required Bearing shown on the plans after driving the full furnished length, but are within 85% of the Nominal Driven Bearing, the pile shall be left for a minimum of 24 hours to allow for soil setup. The pile shall then be redriven before splicing and driving additional lengths. 5. Piles should penetrate well below the scour elevations shown in the Design Scour Table included in the plans. If these requirements cannot be met, contact the BBS for guidance

19

SPLICING

TIMBER 1. No planned splices are allowed 2. Unplanned splices must be; 1. 4 - 4 foot long Metal Plates 2. 1 ­ 3 foot long Metal Pipe Sleeve

METAL SHELL 1. 2. 3. 4. Complete Joint Penetration Weld Splice. Welded Commercial Splice Planned Splice segment lengths must be at least 20 Feet long. Unplanned splice segment lengths must be at least 10 feet long.

H ­ PILE 1. 2. 3. 4. 5. Complete Joint Penetration Weld Splice. Welded Plate Field Splice Welded Commercial Splice Planned Splice segment lengths must be at least 20 Feet long. Unplanned splice segment lengths must be at least 10 feet long.

PRECAST CONCRETE PILE 1. 2. No Splices are allowed. If extensions or buildups are required, they shall be constructed as shown in the Precast Pile Base sheet included in the plans.

20

PILE INSPECTOR FIELD BOOK

(As needed to complete BBS 2184)

1. DIAGRAM SHOWING PILE LAYOUT 2. LOCATION OF FOOTING 3. PILE TYPE AND SIZE 4. NOMINAL REQUIRED BEARING 5. NUMBER REQUIRED 6. AUTHORIZED FURNISHED LENGTH(S) 7. EQUIPMENT USED 8. REQUIRED BLOWS/INCH VERT & BATTER vs. ENERGY 9. DATE DRIVEN 10. INSPECTORS 11. TABULATION OF DELIVERED LENGTH, CUTOFF, PAID DRIVEN LENGTH and PAID FURNISHED LENGTHS.

Measured Length to TOP of Pile = 2.70 Ft CUTOFF = 2.70 Ft Elevation Pile Cut-off 327.60

LENGTH DRIVEN = 27.30 Ft

Elevation

Pile Tip 300.30

21

EXAMPLE A - Single Acting Diesel Hammer ­ Steel H-Pile

Type & Size: Steel HP 10x42 Nominal Required Bearing: 330 kips Allowable Resistance Available: 110 kips Estimated Length 43 feet The contractor proposes to use: Delmag D-22 Hammer Ram Weight= 4,850 LBS Height of Fall ­ Varies - operating Range 6-8 feet (Rated 39,780 ft-lbs) Energy varies with height of fall Calculate minimum and maximum energies for the Pile Minimum E = 0.082 x [RN + 100]2 = 0.082 x [330 + 100]2 = 15,162 ft-lbs Maximum E = 0.193 x [RN + 100]2 = 0.193 x [330 + 100]2 = 35,686 ft-lbs Calculate the height of fall to achieve these energies Minimum E = 15,162 = Wt hammer * Ht fall = 4850 * H Minimum H = 3.13 ft Maximum E = 35,686 = Wt hammer * Ht fall = 4850 * H Maximum H = 7.36 ft. Hammer is capable of driving the piles within specification if at final bearing the hammer is operated between 3.25 and 7.25 foot fall. Chart the RNDB for the hammer for blows per inch from 2 and 10 and hammer fall heights between 3.25 and 7.25 feet What is the Number of Blows per inch of penetration (Nb) for an acceptable Nominal Driven Bearing at 6.5 ft Ram fall? Formula for nominal Driven Bearing is

RNDB 1.75 E Log (10 Nb) 100

RN 100

Solving for (Nb)

Nb

10

1.75

E

10

330 100

With: RN = 330 kips and E = 4850 * 6.5 ft 31,525 ft-lbs

Nb

10

1.75 31 , 525

= 2.4 blows/in.

10

22

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 330 kips Min. Required Hammer Energy (Production): 15162 ft-lbs Max. Required Hammer Energy (Production): 35686 ft-lbs Batter Pile Slope: 3 " horz. / 12" vert. Hammer Make & Model: Delmag D-22 Type (Diesel, Air/steam, Drop): Diesel Action (Single or Double Acting): Single Minimum Visible Fall Height: 5.8 ft. Max. Operating Fall Height: 8 ft. Ram Weight: 4850 lbs Test Pile - Nominal Requird Bearing: 363 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.946 Modified on 12/27/07 17578 ft-lbs 41373 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 Energy (lbs-ft.) 26675 27888 29100 30313 31525 32738 33950 35163 36375 37588 38800 40013 41225 42438 43650 44863 46075 47288 48500 Nb (blows/inch) 3.2 3.0 2.8 2.6 2.4 2.3 2.2 2.0 1.9 1.9 1.8 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1 186 192 199 205 211 217 222 228 234 239 245 250 255 261 266 271 276 281 285 2 272 280 288 296 304 312 320 327 334 341 348 355 362 369 376 382 389 395 401 3 322 332 341 350 359 368 376 385 393 401 409 417 425 433 440 448 455 462 469 4 358 368 378 388 398 407 417 426 435 444 452 461 469 478 486 494 502 510 517 5 386 397 407 418 428 438 448 458 467 476 486 495 504 512 521 530 538 547 555 6 408 420 431 442 453 463 473 484 493 503 513 522 532 541 550 559 568 577 585 7 427 439 451 462 473 484 495 505 516 526 536 546 556 565 575 584 593 602 611 8 444 456 468 480 491 503 514 525 535 546 556 566 576 586 596 605 615 624 633 9 459 471 483 495 507 519 530 541 552 563 574 584 594 605 615 624 634 644 653 10 472 484 497 509 521 533 545 556 568 579 589 600 611 621 631 641 651 661 671 11 483 497 509 522 534 546 558 570 581 593 604 615 625 636 646 657 667 677 687

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 Energy (lbs-ft.) 26675 27888 29100 30313 31525 32738 33950 35163 36375 37588 38800 40013 41225 42438 43650 44863 46075 47288 48500 Nb (blows/inch) 4.2 3.8 3.6 3.3 3.1 2.9 2.7 2.6 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.8 1.7 1.6 1.6 1 186 192 199 205 211 217 222 228 234 239 245 250 255 261 266 271 276 281 285 2 272 280 288 296 304 312 320 327 334 341 348 355 362 369 376 382 389 395 401 3 322 332 341 350 359 368 376 385 393 401 409 417 425 433 440 448 455 462 469 4 358 368 378 388 398 407 417 426 435 444 452 461 469 478 486 494 502 510 517 5 386 397 407 418 428 438 448 458 467 476 486 495 504 512 521 530 538 547 555 6 408 420 431 442 453 463 473 484 493 503 513 522 532 541 550 559 568 577 585 7 427 439 451 462 473 484 495 505 516 526 536 546 556 565 575 584 593 602 611 8 444 456 468 480 491 503 514 525 535 546 556 566 576 586 596 605 615 624 633 9 459 471 483 495 507 519 530 541 552 563 574 584 594 605 615 624 634 644 653 10 472 484 497 509 521 533 545 556 568 579 589 600 611 621 631 641 651 661 671 11 483 497 509 522 534 546 558 570 581 593 604 615 625 636 646 657 667 677 687

3:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 Energy (lbs-ft.) 26675 27888 29100 30313 31525 32738 33950 35163 36375 37588 38800 40013 41225 42438 43650 44863 46075 47288 48500 Energy x "U" 25232 26378 27525 28672 29819 30966 32113 33260 34407 35554 36700 37847 38994 40141 41288 42435 43582 44729 45876 Nb (blows/inch) 3.5 3.3 3.0 2.8 2.6 2.5 2.4 2.2 2.1 2.0 1.9 1.8 1.8 1.7 1.6 1.6 1.5 1.5 1.4 1 178 184 190 196 202 208 214 219 225 230 235 240 246 251 256 260 265 270 275 2 262 270 278 286 293 301 308 315 322 329 336 343 350 356 363 369 375 382 388 3 311 320 329 338 346 355 363 371 379 387 395 403 410 418 425 432 440 447 454 4 345 355 365 375 384 393 402 411 420 429 437 445 454 462 470 478 485 493 500 5 372 383 393 403 413 423 433 442 451 461 470 478 487 496 504 512 521 529 537 6 394 405 416 427 437 448 458 468 477 487 496 505 514 523 532 541 550 558 566 7 413 424 436 447 458 468 479 489 499 509 519 528 538 547 556 565 574 583 592 8 429 441 453 464 475 486 497 507 518 528 538 548 558 567 577 586 595 604 613 9 443 455 467 479 491 502 513 524 534 545 555 565 575 585 595 604 614 623 632 10 456 468 481 493 504 516 527 538 549 560 571 581 591 601 611 621 631 640 650 11 467 480 493 505 517 529 540 552 563 574 584 595 605 616 626 636 646 656 665

3:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 Energy (lbs-ft.) 26675 27888 29100 30313 31525 32738 33950 35163 36375 37588 38800 40013 41225 42438 43650 44863 46075 47288 48500 Energy x "U" 25232 26378 27525 28672 29819 30966 32113 33260 34407 35554 36700 37847 38994 40141 41288 42435 43582 44729 45876 Nb (blows/inch) 4.6 4.3 3.9 3.7 3.4 3.2 3.0 2.8 2.7 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.9 1.8 1.7 1 178 184 190 196 202 208 214 219 225 230 235 240 246 251 256 260 265 270 275 2 262 270 278 286 293 301 308 315 322 329 336 343 350 356 363 369 375 382 388 3 311 320 329 338 346 355 363 371 379 387 395 403 410 418 425 432 440 447 454 4 345 355 365 375 384 393 402 411 420 429 437 445 454 462 470 478 485 493 500 5 372 383 393 403 413 423 433 442 451 461 470 478 487 496 504 512 521 529 537 6 394 405 416 427 437 448 458 468 477 487 496 505 514 523 532 541 550 558 566 7 413 424 436 447 458 468 479 489 499 509 519 528 538 547 556 565 574 583 592 8 429 441 453 464 475 486 497 507 518 528 538 548 558 567 577 586 595 604 613 9 443 455 467 479 491 502 513 524 534 545 555 565 575 585 595 604 614 623 632 10 456 468 481 493 504 516 527 538 549 560 571 581 591 601 611 621 631 640 650

23

24

EXAMPLE B - Single Acting Air/Steam Hammer ­ Metal Shell Pile

Type & Size: Metal Shell ­ 12 in. dia x 0.179 in. walls Nominal Required Bearing: 189 kips Allowable Resistance Available: 62 kips Est Length: 24 ft. Contractor has requested to use a Vulcan #1 Hammer Hammer - VULCAN #1 (Single Acting Air/Steam) Ram Weight = 5,000 LBS Height of Fall - 3 FT This type hammer must have ram weight > 1.4 tons, and Ram weight > 1/3 combined weight of Pile Cap and Pile. The Weight of Ram = 5,000#, which is greater than 1.4 tons - OK The weight of the pile cap = 895#; and the weight of the Pile = 24' x 22.6 #/LF = 542.4# 1/3(895# + 543#) = 1438#/3 = 479# which is much less than ram weight - OK Vulcan #1 has a fixed stroke and constant operating energy W * H = 5000# * 3 ft = 15,000 ft-lbs Minimum E = 0.082 x [RN + 100]2 = 0.082 x [189 + 100]2 = 6,849 ft-lbs - OK Maximum E = 0.193 x [RN + 100]2 = 0.193 x [189 + 100]2 = 16,120 ft-lbs - OK This hammer is capable of driving the piles to the Nominal Required Bearing with a rate of penetration of between 2 and 10 blows at final bearing.

What is the Number of Blows per inch of penetration (Nb) for an acceptable Nominal Driven Bearing at 3 ft ram fall?

Formula for Nominal Driven Bearing is

RNDB 1.75 E Log (10 Nb) 100

RN 100

Solving for (Nb)

Nb

10

1.75

E

With: RN = 189 kips and E = 15,000 ft-lbs

10

189 100

Nb

10

1.75 15 , 000

= 2.2 blows/in.

10

25

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 189 kips Min. Required Hammer Energy (Production): 6849 ft-lbs Max. Required Hammer Energy (Production): 16120 ft-lbs Batter Pile Slope: 3 " horz. / 12" vert. Hammer Make & Model: Vulcan #1 Type (Diesel, Air/steam, Drop): Air/Steam Action (Single or Double Acting): Single Minimum Visible Fall Height: 3 ft. Max. Operating Fall Height: 3 ft. Ram Weight: 5000 lbs Test Pile - Nominal Requird Bearing: 207.9 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.946 Modified on 12/27/07 7774 ft-lbs 18297 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 Energy (lbs-ft.) 13750 15000 16250 17500 18750 20000 21250 22500 23750 25000 26250 27500 28750 30000 31250 32500 33750 35000 36250 Nb (blows/inch) 2.6 2.2 2.0 1.8 1.6 1.5 1.4 1.3 1.2 1.1 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.7 1 105 114 123 132 140 147 155 163 170 177 184 190 197 203 209 215 221 227 233 2 167 179 190 201 212 222 232 242 251 260 269 278 286 294 302 310 318 326 333 3 203 217 230 242 254 266 277 288 298 309 319 329 338 348 357 366 375 384 392 4 229 243 257 271 284 296 309 321 332 343 354 365 375 386 396 405 415 425 434 5 249 264 279 293 307 320 333 346 358 370 382 393 404 415 426 436 446 456 466 6 265 281 297 312 326 340 354 367 380 392 404 416 428 439 450 461 472 482 492 7 279 295 312 327 342 357 371 384 398 411 423 435 447 459 471 482 493 504 515 8 291 308 325 341 356 371 385 400 413 427 440 452 465 477 489 500 512 523 534 9 301 319 336 352 368 384 399 413 427 441 454 467 480 492 505 517 528 540 551 10 310 329 346 363 379 395 410 425 439 453 467 480 493 506 519 531 543 555 566 11 319 338 355 373 389 405 421 436 451 465 479 492 506 519 532 544 556 568 580

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 Energy (lbs-ft.) 13750 15000 16250 17500 18750 20000 21250 22500 23750 25000 26250 27500 28750 30000 31250 32500 33750 35000 36250 Nb (blows/inch) 3.2 2.7 2.4 2.1 1.9 1.8 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.0 1.0 0.9 0.9 0.9 0.8 1 105 114 123 132 140 147 155 163 170 177 184 190 197 203 209 215 221 227 233 2 167 179 190 201 212 222 232 242 251 260 269 278 286 294 302 310 318 326 333 3 203 217 230 242 254 266 277 288 298 309 319 329 338 348 357 366 375 384 392 4 229 243 257 271 284 296 309 321 332 343 354 365 375 386 396 405 415 425 434 5 249 264 279 293 307 320 333 346 358 370 382 393 404 415 426 436 446 456 466 6 265 281 297 312 326 340 354 367 380 392 404 416 428 439 450 461 472 482 492 7 279 295 312 327 342 357 371 384 398 411 423 435 447 459 471 482 493 504 515 8 291 308 325 341 356 371 385 400 413 427 440 452 465 477 489 500 512 523 534 9 301 319 336 352 368 384 399 413 427 441 454 467 480 492 505 517 528 540 551 10 310 329 346 363 379 395 410 425 439 453 467 480 493 506 519 531 543 555 566 11 319 338 355 373 389 405 421 436 451 465 479 492 506 519 532 544 556 568 580

3:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 Energy (lbs-ft.) 13750 15000 16250 17500 18750 20000 21250 22500 23750 25000 26250 27500 28750 30000 31250 32500 33750 35000 36250 Energy x "U" 13006 14188 15371 16553 17735 18918 20100 21283 22465 23647 24830 26012 27194 28377 29559 30741 31924 33106 34288 Nb (blows/inch) 2.8 2.4 2.1 1.9 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.1 1.0 1.0 0.9 0.9 0.8 0.8 0.8 1 100 108 117 125 133 141 148 155 162 169 176 182 189 195 201 207 213 218 224 2 160 171 182 193 203 213 223 232 241 250 259 267 275 284 291 299 307 314 322 3 195 208 220 233 244 256 266 277 287 298 307 317 326 335 344 353 362 370 379 4 220 234 248 261 273 286 297 309 320 331 342 352 362 372 382 392 401 410 419 5 239 254 269 283 296 309 322 334 346 357 368 380 390 401 411 421 431 441 451 6 255 271 286 300 314 328 341 354 366 379 390 402 413 424 435 446 456 466 476 7 268 285 300 315 330 344 358 371 384 397 409 421 432 444 455 466 477 488 498 8 280 297 313 328 344 358 372 386 399 412 425 437 449 461 473 484 495 506 517 9 290 307 324 340 355 370 385 399 413 426 439 452 464 476 488 500 511 522 533 10 299 317 334 350 366 381 396 411 425 438 452 464 477 490 502 514 525 537 548 11 307 326 343 360 376 391 406 421 435 449 463 476 489 502 514 526 538 550 562

3:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 Energy (lbs-ft.) 13750 15000 16250 17500 18750 20000 21250 22500 23750 25000 26250 27500 28750 30000 31250 32500 33750 35000 36250 Energy x "U" 13006 14188 15371 16553 17735 18918 20100 21283 22465 23647 24830 26012 27194 28377 29559 30741 31924 33106 34288 Nb (blows/inch) 3.5 3.0 2.6 2.3 2.1 1.9 1.7 1.6 1.5 1.4 1.3 1.2 1.2 1.1 1.1 1.0 1.0 0.9 0.9 1 100 108 117 125 133 141 148 155 162 169 176 182 189 195 201 207 213 218 224 2 160 171 182 193 203 213 223 232 241 250 259 267 275 284 291 299 307 314 322 3 195 208 220 233 244 256 266 277 287 298 307 317 326 335 344 353 362 370 379 4 220 234 248 261 273 286 297 309 320 331 342 352 362 372 382 392 401 410 419 5 239 254 269 283 296 309 322 334 346 357 368 380 390 401 411 421 431 441 451 6 255 271 286 300 314 328 341 354 366 379 390 402 413 424 435 446 456 466 476 7 268 285 300 315 330 344 358 371 384 397 409 421 432 444 455 466 477 488 498 8 280 297 313 328 344 358 372 386 399 412 425 437 449 461 473 484 495 506 517 9 290 307 324 340 355 370 385 399 413 426 439 452 464 476 488 500 511 522 533 10 299 317 334 350 366 381 396 411 425 438 452 464 477 490 502 514 525 537 548 11 307 326 343 360 376 391 406 421 435 449 463 476 489 502 514 526 538 550 562

26

27

EXAMPLE C

Batter Pile Hammer Energy Reduction Coefficient

(ENGLISH)

SINGLE ACTING HAMMER RN = 330 kips 2:12 BATTER Determine hammer energy reduction coefficient when used on the specified battered piles

U=

[ 0.1 ( 10 - m ) ]

( 1+ m )

2

TANGENT 212 = :

2 = 0.167 12

U=

[ 0.1( 10 - 0.167) ]

[ 1 + ( 0.167 ) ]

2

U

0.1 9.833 1 0.028

0.9833 = 0.97 10139 .

U=

The Energy developed by the hammer per blow shall be multiplied by 0.97 for all calculations to determine the actual Energy delivered to the top of the battered pile. (Or see the table at the end of Section 512 of the Construction Manual OR Use the Inspectors Pile Bearing Table Spreadsheet)

28

This page left intentionally blank

29

Class Problem #1: Contractor has requested to use a Vulcan #010 Hammer to install the following piling: Type & Size: Metal Shell ­ 14 in. dia x 0.25 in. walls Nominal Required Bearing: 383 kips Allowable Resistance Available: 127 kips Est Length: 65 ft.

Is the hammer acceptable? (Max and min energy and other requirements) How many blows per inch are required at bearing?

The contractor provides the following information about his hammer: Vulcan #010 Hammer ­ Single Acting Air Fixed Stroke 39 in. Rated Operating Energy = 32,500 ft-lbs Weight (W) of Striking Parts = 10,000 #

Solution:

30

This page left intentionally blank to work Problem #1

31

Class Problem #2: Contractor has requested to use a Delmag 36 Diesel Hammer to install the following piling: Type & Size: Steel HP12x53 Nominal Required Bearing: 418 kips Factored Resistance Available: 209 kips Est Length: 60 ft. Is this hammer acceptable? (Max and Min Energy and other Requirements) Contractor has indicated the hammer striking parts will fall 5 feet at Nominal Driven Bearing. How many blows per inch are required to verify adequate driven bearing at the anticipated hammer fall of 5'? Delmag 36 single acting Diesel hammer has a variable stroke 4.16 ­ 9.3 feet with a Ram Weight (W) = 7940 #, and a Rated energy of 73,780 ft-pounds. The contractor believes a 5' fall will be maintained at Nominal Driven Bearing. Solution:

32

This page left intentionally blank to work Problem #2

33

Class Problem #3

Determining Pay Quantities

Authorized Furnished Length (by Letter) 50 50 50 50 50 50 50 Delivered Length* 50 55 45 55 50 50 25 Added Splice Length 101 102 252 Cut Off Length 3 3 3 10 2 2 1 Total Pay Length Furnish Drive

* AS MEASURED IN THE FIELD 1. STATE FURNISHED SPLICE LENGTH. 2. CONTRACTOR FURNISHED SPLICE LENGTH.

34

35

36

37

38

(Example: Letter Notifying Contractor of Lengths)

February 26, 2007 County Section Route Contract No. Don Doe, Superintendent ACME Construction 1200 North Easy Street Anyplace, IL

Dear Mr. Doe: As specified in Article 512.16 of the Standard Specifications for Road and Bridge Construction, you are hereby being provided this itemized list of authorized lengths of metal pile shells to furnish for the structure for the above route and section. It has been determined from the test piles driven on February 19, 2007 that the following lengths should be furnished: E Abut Pier 1 W Abut 23 pile @ 24' 32 pile @ 30' 23 pile @ 36' = = = 552 lin. ft. 960 lin. ft. 828 lin. ft.

Very Truly Yours,

John Smith District Engineer

39

Pile Data - East Abutment

Stage Construction Line To 6 Pile SPACES @ 5'-3" = 31'-6" 8° 55'42" Algon. RD

East Abut.

9

Date: 7/31/07

(Friday)

Weather: Mostly sunny, 60° AM, Partly cloudy 76° PM

Contractor: Lorig (7 AM - 3:30 PM)

Pay items:

5120100 Furnishing Metal Pile Shells, 12" x 0.179"

51202600 Driving Piles

Crew:

1-Foreman, 4-Carpenters, 2-Operators

Equipt: 1-Crane (Link Belt LS138H II)

1-Pick-up (Ford F-350)

Example Field Data Record

40

1-Hammer APE D19-42

4190 LB RAM

E=24,093 @ 50 Blows/min

Heat Pile No. No. 615203 1 615203 2 615203 3 615203 4 615203 5 168847 6 7

Furn. Del. Len. Len. 50.0 50.02' 50.0 51.11' 50.0 50.00' 50.0 50.03' 50.0 50.08' 50.0 50.04' Test Pile

Cut Off 1.92' 8.08' 4.92' 6.00' 5.33' 3.42' 6.92

Driven Blow Len. FT 48.1' 50 43.04' 85 45.08' 58 44.03' 60 44.75' 51 46.62' 55

Blow MIN 49 52 51 50 50 49

Single Acting Hammer

300.0'

271.62'

Hammer Cushion 2" MICARTA

Nominal

Req'd Bearing:

Production 270 kips Test Pile 297 kips

Pay: 51201000 --> 300.0' 51202600 --> 271.62'

Number Required: 6 + 1 test pile

Furnished Length: 50 ft (see Letter 7/2/07)

Req'd Blows/In.

Initial (s)

Measured in place by: Calculated by: Checked by:

= From formula, R NDB 1.75 E Log(10N) - 100 Req'd = 3.0 Blows/In = (36 blow/ft)

Date

7-13-07 7/14/07 7/18/07

MAP & TEB MAP JCS

41

From CM Section 512 with additional information SECTION 512. PILING

STRUCTURES

Prior to the start of pile driving operations the Resident and/or the pile inspector must review the plans and Standard Specifications as well as the Construction Inspector's Checklist for Piling. If anything appears unclear or contradictory between the plans and Standard Specifications the Supervising Engineer should be notified and the matter resolved prior to the Contractor starting work. 512.07 Welding It is not the intent of the specification for the inspector to qualify a welder for the purpose of splicing piles. All welders shall produce Evidence of Prequalification to perform the intended welding. The evidence should be appropriate for both the type of process (e.g. fillet) and weld position (e.g. horizontal, vertical or overhead) to be performed. 512.08 Storage and Handling of Piles A. Precast and Precast Prestressed Concrete Piles. The Specifications stress the importance of handling concrete piles with care. It is very easy to cause cracks by indifferent handling, and cracks which not only may open up under driving, but which may even spall and "powder" to such an extent as to seriously lessen the strength or life of the pile. Shock, vibration, or excessive deflection must be avoided. When piles are picked up with adjustable slings, blocking should be used to prevent breaking off corners of the pile. The pick-up points should be plainly marked on all piles before removal from the casting bed and all lifting shall be done at these points. All piles must be wetted at least 6 hours before being driven and shall be kept moist until driven. B. Steel Piles. In loading steel piles at the fabricator's plant, the individual piles must be placed with webs vertical and so blocked that the flanges will not be bent, nor permanent bends caused in the piles by lack of support. The Department's Inspector at the fabricator's plant checks the loading into freight cars, but the inspector at the jobsite must check the piling for damage upon arrival. C. Material Inspection. If piles arrive on the jobsite without evidence of inspection, the Resident should contact the District Materials Office immediately. No piles shall be used unless there is evidence of inspection or approval from the District Materials Engineer. In addition to with the materials inspection you must have evidence that all iron and steel products have been wholly manufactured in the United States. Both Federal and State laws require the use of domestically produced steel products in all our projects. Severe consequences included loss of federal participation can result from failure to document source of iron and steel products incorporated into our projects. Identification of approved piles can be made as follows: Precast Concrete Piles: Certified Producer List Precast, Precast Prestressed Concrete Piles: ILL OK Stamp Timber Piles: Hammer Mark and Tag from Approved Testing Agency or Certification

42

From CM Section 512 with additional information

STRUCTURES

Steel H-Pile, Metal Shell Piles: ILL-OK Stamp, manufacturer's certification or LA15. If steel piles come from the Contractor's yard, the Contractor must be able to provide manufacturer's certification and heat numbers even if stamped ILL OK. The heat numbers will be printed on the piles and must agree with the heat numbers shown on the certification. Otherwise, the piles must not be used. Maintain a record of the heat numbers of the piles as they are installed. A separate column in the field pile driving record book can be used for this purpose. (See Example B) 512.09 Preparation for Driving Prior to driving the production piles, the excavation or embankment in the immediate area of the piling must be complete. Although the area only had to be within two feet prior to driving the test pile, the remainder of the preparation must be completed before starting the remaining piles. The plans should be checked again to ensure any precoring is correctly performed to the depths indicated, and become aware of minimum elevations for the pile tips shown on the plans. The Contractor shall provide the Resident with the make and model of the hammer. The hammer should be checked for compliance with the energy requirements for the Nominal Required Bearing of the pile being driven as required in Section 512.10. (See Examples A, B, C & D) This is also an ideal time to set up the field pile driving record book or other means of recording the pile driving data which will be forwarded to the Bureau of Bridges and Structures at the end of the job and compute the required blow per inch (25mm) for the hammer which will be used to obtain 110% of plan bearing on the test pile and plan bearing on the vertical as well as battered pile. The typical procedure which should be followed to check for hammer compliance and set up charts for Nominal Driven Bearing for use in the field is: 1. The contractor provides hammer specification sheets for the hammer they have chosen 2. The Resident computes the minimum and maximum energies to drive the piles at penetration rates of between 2 and 10 blows per inch 3. Verify the hammer selected by the contractor can operate between those rates. 4. Develop a chart showing the relationship between various hammer energies and penetration rate. 5. Drive the piles to the point where the rate of penetration at the energy developed by the hammer equals or exceeds the Nominal required bearing shown on the plans. 6. Record the rate of penetration, energy developed by the hammer at bearing and the Nominal Driven Bearing (RNDB) on your record for that pile. 512.10 Driving Piles Selection of Hammer. The hammer must meet the energy requirements of the Standard Specifications. Regardless of the type of hammer or type of pile, the energy requirement remains the same. The hammer must develop enough energy to drive the pile to a Nominal

43

From CM Section 512 with additional information

STRUCTURES

Driven Bearing (RNDB) equal to or greater than the Nominal Required Bearing (RN) shown on the plans at a penetration rate of between two and ten blows per inch (blows per 25 mm). The formulas to check for this are Minimum E> 0.082 x [RN + 100]2 (English) Maximum E< 0.193 x [RN + 100]2 (English) E> 0.005 x [RN + 550]2 (Metric) E< 0.012 x [RN + 550]2 (Metric)

Where: RN = Nominal Required Bearing in kips (kN) E = Energy Developed by the hammer per blow in ft lb (J) Once the hammer is delivered and is being used, the Resident should check to make sure the required energy is actually being developed as the pile approaches bearing. The delivered energy of the hammer, regardless of the type selected is critical in determining the pile has achieved a Nominal Driven Bearing at least as great as the Nominal Required Bearing. Consequently either the hammer fall or correctly correlated gages must be properly functioning and monitored during the pile driving operation. In addition to the energy requirements of the hammer, some situations require additional considerations in selecting the hammer. Drop (Gravity) Hammer. A drop hammer cannot be considered for driving precast piles or piles with a Nominal Required Bearing (RN) greater than 120 kips (533kN). In selecting a drop hammer, the ram weight (mass) must be equal to or exceed the combined weight (mass) of the Pile being driven and the drive head. A drop hammer uses a falling ram weight. Drop hammers are guided in their fall by riding in a set of leads. Powered by a hoisting engine having a friction clutch, the drop hammer is raised by an attached hoist line to the desired height. The engine is declutched, allowing the drop hammer to free-fall as the hoist line plays out. The short time-duration forces exerted directly upon the head of a pile by a drop hammer would destroy it. The pile head is thus always protected with a pile cap which the drop hammer's falling ram weight strikes. The pile cap rests directly upon the pile head and descends with the pile upon each blow. When the pile has been driven, the cap is attached to the hammer and lifted with the hammer to set upon the next pile. Remember, no drop is to exceed 15 feet (4.6 m), as this may injure the pile. A greater penetration per blow with less injury to the pile head will usually be produced with a heavy hammer and a low fall than with a light hammer and a high fall. In either case, the theoretical amount of energy expended may be the same. With a low fall, more blows can be struck in the same time, and there is less chance for the soil to develop full side friction around the pile between the blows. Where hard driving in encountered, it may be necessary to reduce the length of the stroke in order to avoid injury to the pile. Air/Steam Hammers. Consideration must be given to the weight of the pile in determining hammer size for this type hammer. The striking parts of the hammer must be at least one-third of the weight (mass) of the pile and drive cap combined, and in no case less than 1.4 tons (1.3 metric tons).

44

From CM Section 512 with additional information

STRUCTURES

Steel H-Piles Driven to Hard Rock. When steel H-piles are driven to hard rock care must be taken to avoid damaging the tip of the pile. If it is observed that the penetration resistance and hammer energy has abruptly increased, the contractor should reduce the energy developed by the hammer and the Resident may calculate the penetration increment over a reduced increment (Less than 1 inch (25mm)) when determining the nominal driven bearing to assure the pile obtains the nominal required bearing without sustaining damage. Caps and Collars. It is advisable to provide extra pile and hammer cushions and shock blocks so that they may be quickly replaced when damaged. Leads. Ordinarily, the Contractor will use swing leads for driving piles. This is permitted by the Standard Specifications, provided enough guy ropes are used to hold the leads steadily in place and the toe of the leads is set securely in the ground.. It is necessary that the leads be tied rigidly enough to guide and hold the pile in correct position. This is especially important in difficult driving. Followers. Rarely is it necessary to use a follower in driving piles. If the Contractor wants to use a follower, you should consult your Supervisor before giving permission. One pile in each group of 10 must be driven without a follower and the Nominal Driven Bearing of all the piles in the group determined from that one pile. The piles driven with the follower should be driven to the penetration found to be required for the pile on which the Nominal Driven Bearing was determined without the follower. A follower, as the word is used in this Article, is a length of pile or other special material placed on top of the pile to be driven so that the driving can be done from a higher elevation. Jets. An experienced operator should be able to secure satisfactory alignment of the pile by the use of only one jet. If this cannot be done, two jets may be necessary. The pump serving the jet should have plenty of capacity at a moderate pressure. The volume and pressure must be sufficient to erode freely the material adjacent to the pile. Volume of water is more important than pressure except for penetration of gravel where both volume and pressure are necessary. For jetted piles, the formula for capacity will be applied after the jet is removed and driving is resumed. 512.11 Penetration of Piles An accurate and complete record should be kept of the penetration and nominal driven bearing data for all piles driven. This record must include a diagram of the location of piles in each foundation and a tabulation of the delivered length, cut-off, length left in place (driven length) of each pile and heat number of each steel pile. The final pile penetration rate (Nb) in blow per inch (25mm), make and model of hammer used, Energy developed by the hammer and nominal driven bearing must be recorded along with the Inspector's initials. Remember, unless a minimum pile tip elevation is shown on the plans, foundation piles shall be driven to a penetration of at least 10 feet (3 m) below bottom of footing and other piles to a penetration of at least 10 feet (3 m) below undisturbed earth. Complete and send your Test and production Piling forms and data to the District Office when pile driving is completed. They will be filed as a part of the permanent records on the job and sent to the bureau of Bridges and Structures to be kept with other data for the structure.

45

From CM Section 512 with additional information

STRUCTURES

It is recommended that you calculate the number of blows per inch (25 mm) for several hammer energy levels near the Nominal Required Bearing (RN) in advance of the pile driving operation. You will then know the Nominal Driven Bearing (RNDB) as driving progresses and you may quickly determine when the pile has reached its required bearing. By keeping complete records for driving test piles, the length of piles ordered, and the driving of production piles, including pile diagrams, you will have all the information needed to determine the payment due the Contractor for furnishing and driving piles. Excess Penetration. When the pile has attained the required penetration and nominal driven bearing, the Contractor is not required to continue driving unless called for in the plans or Special Provisions. 512.14 Determination of Nominal Driven Bearing A. Formulas. The Standard Specifications (512.14) provide the required formula for determining Nominal Driven Bearing (RNDB) based the FHWA modified Gates formula. See the typical bearing computations for vertical and battered pile in attached examples. Wave Equation. A Wave equation analysis is required to determine the nominal driven bearing of more heavily loaded piles. When this analysis is required, the contractor must perform the analysis and submit to the Bureau of Bridges and Structures for review and approval of the driving criteria. Load Tests. Load tests are the most accurate method of determining the ultimate axial resistance or nominal driven bearing of piles. This test is used when the structure is complex or when a large number of foundation piles are required. If a load test is required, discuss the matter thoroughly with your supervisor. The procedure will be governed by the contract requirements.

B.

C.

512.15 Test Piles The location of the test pile will be specified in the plans to be driven in a production location of a designated substructure unit. However, the Engineer may have to select which individual pile location shall be used as the test pile within the designated substructure unit. The test pile location should be as far away from the nearest soil boring location as possible in order to obtain more comprehensive subsoil data in the area of the structure. If the Contractor elects to drive the test pile out of the footing area or in a non production location, written permission of the Engineer is required and, the replacement of production pile in the footing area will not be paid for. Where treated timber piles are specified, test piles not driven in a production location or driven outside the footing area may be untreated piles with the written permission of the Engineer. In driving a test pile, be sure to keep a complete record of the driving data all the way down and report on Form BBS 757, Test Pile Driving Record. In doing this, you may delay the driving somewhat but a test pile is driven to help determine the itemized list of lengths to be furnished by the contractor. This is also the final check to the accuracy of the subsurface information upon which the estimated lengths of piling shown in the plans was based. You should notify your supervisor before driving the test pile.

46

From CM Section 512 with additional information Pile Driving Information Submittals

STRUCTURES

Submit pile data with accompanying authorization after all piling have been driven on your contract. The piling diagram should be neat, accurate and the piling numbers should correspond to the pile data tabulation for each pier, abut, etc. Show locations of all test piles. One copy of this information is required and prints will be made and returned for your files. It is important that the summary of length sheet clearly indicate the total furnished quantity and total driven quantity. These quantities should correspond to those in your Quantity Book.

47

From CM Section 512 with additional information Hammer Energy Reduction Coefficients for BATTERED PILES

NOTE:

STRUCTURES

If the hammer has internal ram velocity monitoring, no friction losses or stroke reductions should be used. Because the measured impact velocity is used to control the nominal energy delivered to the pile, losses are internally corrected by the hammer operating system.

U = Hammer Energy Reduction Coefficient (This number is always less than 1) m = Tangent of the Angle of Batter (Horizontal dimension / Vertical dimension) Driven with Drop Hammer Driven with All other Hammers

U

Batter V:H 12:1/2 12:1 12:1 ½ 12:2 12:2 ½ 12:3 12:3 ½ 12:4

0.25 (4 m) (1 m2 ) 0.5

"u"

U

0.1 (10 m) (1 m 2 ) 0.5

"u"

0.989 0.976 0.961 0.945 0.928 0.91 0.89 0.87

0.995 0.988 0.98 0.97 0.959 0.946 0.932 0.917

Example: Determine the Energy Developed by the Hammer per blow on a pile with a 12:2 (V:H) batter if the Energy Developed for vertical bearing is 25,000 ft-lbs and an air/steam hammer is used: 25,000 Ft-lbs x 0.97 = 24,250 ft-lbs The Energy Developed by the Hammer on a pile battered at 2 in 12 is 24,250 ft-lbs

48

From CM Section 512 with additional information This Page Left Intentionally Blank

STRUCTURES

49

From CM Section 512 with additional information PILE HAMMER DATA (ENGLISH) Stroke At Rated Energy, In. Ram Weight, Lbs. 1,445 1,725 3,857 4,000 5,070 1,800 3,000 3,000 5,000 5,000 6,500 6,500 7,500 8,000 8,000 9,300 10,000 14,000 14,000 16,250 20,000 30,000 40,000 1,100 2,000 2,800 4,000 2,800 2,800 5,000 5,000 5,000 7,000 1,500 1,600 3,000 3,000 3,000 2,500 5,000 5,000 5,000

STRUCTURES

Mfgr. Link-Belt (Diesel) **

Model 105 180 312 440 520 18C 2 30C 1 50C 65C 06 0 80C 08 OR 010 140C 014 016 020 030 400C DE-10 DE-20 DE-30 DE-40 DA-35 DA-35 DA-55 DA-55 DE-50 DE-70 9-B-2 9-B-3 S-3 C-3 10-B-3 10-B-2 C-5 S-5 11-B-3

Type Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Dbl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Diff Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act

Blows Per Min. 90-98 90-95 100-105 86-90 80-84 150 70 133 60 120 117 60 50 111 50 80 50 103 60 60 60 55 100 48-52 48-52 48-52 48-52 48-82 48-82 48-82 48-82 40-50 40-50 140 145 65 130-140 105 115 100-110 60 95

Rated Energy Ft. Lbs. 7,500 8,100 15,000 18,200 26,300 3,600 7,260 7,260 15,000 15,100 19,200 19,500 24,375 24,450 26,000 30,225 32,500 36,000 42,000 48,750 60,000 90,000 113,488 8,800 16,000 22,400 32,000 22,400 21,000 40,000 38,000 40,000 56,000 8,200 8,750 9,000 9,000 13,100 15,000 16,000 16,250 19,150

35.23 37.60 30.89 38.40 43.17 10 1/2 29 12 1/2 36 15 1/2 15 1/2 36 39 16 1/2 39 39 39 15 1/2 36 36 36 36 16 1/2 Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* 16 17 36 16 19 20 18 39 19

Vulcan (Steam-Air)

McKiernanTerry (Diesel)

McKiernanTerry (Steam-Air)

50

From CM Section 512 with additional information McKiernanTerry (Steam-Air) 11-B-2 C-826 S-8 C-8 S-10 S-14 00 0A 0 1 1A 1 1/2A 2 D-5 D-12 D-15 D-22 D-30 D-36 D-44 D-55 50 65 80 100 115 125 140 160 200 300 K-13 K-22 K-25 K-32 K-35 K-42 K-45 K-60 Dbl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act 120 85-95 55 77-85 55 60 85 90 110 130 120 125 145 50-60 50-60 50-60 50-60 39-60 37-53 37-55 36-47 60 60 50 50 50 50 60 60 60 55 45-60 45-60 39-60 45-60 39-60 45-60 39-60 35-60 20 18 39 20 39 32 36 21 24 21 18 18 16 Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* 36 36 39 39 39 39 36 36 36 36 102 102 110 102 110 102 110 102 3,625 8,000 8,000 8,000 10,000 14,000 6,000 5,000 3,000 1,850 1,600 1,500 1,025 1,100 2,750 3,300 4,850 6,600 7,940 9,460 11,860 5,000 6,500 8,000 10,000 11,500 12,500 14,000 16,250 20,000 30,000 2,860 4,850 5,510 7,050 7,700 9,260 9,900 13,200

STRUCTURES 22,080 24,000 26,000 26,000 32,500 37,500 54,900 22,050 19,850 13,100 10,020 8,680 5,755 9,050 22,610 27,000 39,780 54,200 73,780 87,000 117,175 15,000 19,500 26,000 32,500 37,375 40,625 42,000 48,750 60,000 90,000 24,400 41,300 50,700 60,100 70,800 79,000 91,100 112,600

Union (Stream)

Delmag (Diesel)

Conmaco

Kobe

*

Use actual length of stoke as observed in field. Rated energy is determined by stoke which increases with driving resistance.

** Equivalent HW energy is obtained by plotting the observed bounce chamber pressure on the corresponding chart provided in the gage box.

51

From CM Section 512 with additional information PILE HAMMER DATA (METRIC) Stroke At Rated Energy, mm 895 955 785 975 1,097 267 737 318 914 394 394 914 991 419 991 991 991 394 914 914 914 914 419 Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* 406 432 914 406 483 508 457 991 483 Ram Weight, kN 6.42 7.67 17.16 17.79 22.55 8.00 13.34 13.34 22.24 22.24 28.91 28.91 33.36 35.58 35.58 41.36 44.48 62.26 62.26 72.27 88.95 133.43 177.90 4.89 8.89 12.45 17.79 12.45 12.45 22.24 22.24 22.24 31.13 6.67 7.12 13.34 13.34 13.34 11.12 22.24 22.24 22.24

STRUCTURES

Mfgr. Link-Belt (Diesel) **

Model 105 180 312 440 520 18C 2 30C 1 50C 65C 06 0 80C 08 OR 010 140C 014 016 020 030 400C DE-10 DE-20 DE-30 DE-40 DA-35 DA-35 DA-55 DA-55 DE-50 DE-70 9-B-2 9-B-3 S-3 C-3 10-B-3 10-B-2 C-5 S-5 11-B-3

Type Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Dbl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Diff Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Dbl-Act

Blows Per Min. 90-98 90-95 100-105 86-90 80-84 150 70 133 60 120 117 60 50 111 50 80 50 103 60 60 60 55 100 48-52 48-52 48-52 48-52 48-82 48-82 48-82 48-82 40-50 40-50 140 145 65 130-140 105 115 100-110 60 95

Rated Energy J 10,169 10,982 20,337 24,676 35,658 4,881 9,843 9,843 20,337 20,473 26,032 26,438 33,048 33,150 35,251 40,980 44,064 48,810 56,944 66,096 81,349 122,024 153.869 11,931 21,693 30,370 43,386 30,370 28,472 54,233 51,521 54,233 75,926 11,118 11,863 12,202 12,202 17,761 20,337 21,693 22,032 25,964

Vulcan (Steam-Air)

McKiernanTerry (Diesel)

McKiernanTerry (Steam-Air)

52

From CM Section 512 with additional information McKiernanTerry (Steam-Air) 11-B-2 C-826 S-8 C-8 S-10 S-14 00 0A 0 1 1A 1 1/2A 2 D-5 D-12 D-15 D-22 D-30 D-36 D-44 D-55 50 65 80 100 115 125 140 160 200 300 K-13 K-22 K-25 K-32 K-35 K-42 K-45 K-60 Dbl-Act Dbl-Act Sgl-Act Dbl-Act Sgl-Act Sgl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Dbl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act Sgl-Act 120 85-95 55 77-85 55 60 85 90 110 130 120 125 145 50-60 50-60 50-60 50-60 39-60 37-53 37-55 36-47 60 60 50 50 50 50 60 60 60 55 45-60 45-60 39-60 45-60 39-60 45-60 39-60 35-60 508 457 991 508 991 813 914 533 610 533 457 457 406 Var.* Var.* Var.* Var.* Var.* Var.* Var.* Var.* 914 914 991 991 991 991 914 914 914 914 2,591 2,591 2,794 2,591 2,794 2,591 2,794 2,591 16.12 35.58 35.58 35.58 44.48 62.26 26.69 22.24 13.34 8.23 7.12 6.67 4.56 4.89 12.23 14.68 21.57 29.36 35.32 42.07 52.75 22.24 28.91 35.58 44.48 51.14 55.59 62.26 72.27 88.95 133.43 12.72 21.57 24.51 31.36 34.25 41.18 44.03 58.70

STRUCTURES 29,937 32,540 35,251 35,251 44,064 50,843 74,435 29,896 26,913 17,761 13,585 11,769 7,803 12,270 30,655 36,607 53,935 73,485 100,032 117,956 158,868 20,337 26,438 35,251 44,064 50,674 55,080 56,944 66,096 81,349 122,024 33,082 55,995 68,740 81,485 95,992 107,110 123,515 152,665

Union (Stream)

Delmag (Diesel)

Conmaco

Kobe

*

Use actual length of stoke as observed in field. Rated energy is determined by stoke which increases with driving resistance. ** Equivalent HW energy is obtained by plotting the observed bounce chamber pressure on the corresponding chart provided in the gage box.

53

From CM Section 512 with additional information EXAMPLE A Typical Calculations - Single Acting Diesel Hammer - H ­ Pile Driven Given:

STRUCTURES

Type & Size: Steel HP12x74 Nominal Required Bearing: 589 kips (2620 kN) Allowable Resistance Available: 163 kips (1870 kN) Est Length: 60 ft.

Contractor proposes to use a Delmag D12-32 hammer Ram = 2820 lbs. MAXIMUM operating energy of 32,881 ft-lbs. (44,553 J) Check for the MINIMUM Energy requirement: ENGLISH Minimum E> 0.082 x [RN + 100]2 (English) Hammer must develop be at least 0.082 x [589 + 100]2= 0.082 X [689] 2 = 38,927.1 ft-lbs Energy

METRIC Minimum E> 0.005 x [RN + 550]2 (Metric) Hammer must develop be at least 0.005 x [2620 + 550]2= 0.005 X [3170] 50,244.5 J Energy

2

=

The MAXIMUM operating energy of the hammer (32,881 ft-lbs. (44,553 J)) is LESS than the MINIMUM required energy (38,927 ft-lbs. (50,245 J)) for the Nominal Required Bearing.

Inform Contractor the energy of the hammer does not meet specifications.

The Contractor subsequently proposes to use a Delmag D16-32 hammer with a rated energy of 41,136 ft lbs (56,944 J) which exceeds MINIMUM specification. Now we must check for the MAXIMUM energy: ENGLISH Maximum E< 0.193 x [RN + 100]2 (English) Hammer Energy must not exceed 0.193 x [589 + 100]2= 0.193 X [689] 2 = 91621.1 ft-lbs METRIC Maximum E< 0.012 x [RN + 550]2 (Metric) Hammer Energy must not exceed 0.012 x [2620 + 550]2= 0.012 X [3170] 120,587 J

2

=

The MAXIMUM operating energy of the hammer (41,136 ft-lbs. (56,944 J)) is LESS than the MAXIMUM allowable energy (91,621 ft-lbs.(120,587 J)) for the Nominal Required Bearing. Inform Contractor the energy of the hammer meets energy requirements, and the hammer should be able to meet requirement to drive the pile between 2 and 10 blows per inch (25mm) when the Nominal Driven Bearing (RNDB) reaches the Nominal Required Bearing (RN) shown on the plans. Set up your Table of Nominal Driven Bearing values for this hammer:

54

From CM Section 512 with additional information

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 589 kips Min. Required Hammer Energy (Production): 38927 ft-lbs Max. Required Hammer Energy (Production): 91621 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Delmag 16-32 Type (Diesel, Air/steam, Drop): Diesel Action (Single or Double Acting): Single Minimum Visible Fall Height: 8 ft. Max. Operating Fall Height: 11.66 ft. Ram Weight: 3528 lbs Test Pile - Nominal Requird Bearing: 647.9 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.970

STRUCTURES

Modified on 12/27/07 45867 ft-lbs 107955 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 Energy (lbs-ft.) 27342 28224 29106 29988 30870 31752 32634 33516 34398 35280 36162 37044 37926 38808 39690 Nb (blows/inch) 24.0 22.1 20.3 18.8 17.4 16.2 15.1 14.1 13.3 12.5 11.8 11.1 10.5 10.0 9.5 1 189 194 199 203 207 212 216 220 225 229 233 237 241 245 249 2 276 283 288 294 300 306 311 317 322 328 333 338 343 349 354 3 327 334 341 348 354 361 367 373 379 386 392 398 403 409 415 4 364 371 378 386 393 400 406 413 420 427 433 440 446 452 459 5 392 399 407 415 422 430 437 444 451 458 465 472 479 486 492 6 415 423 431 439 447 454 462 470 477 484 492 499 506 513 520 7 434 442 451 459 467 475 483 491 499 506 514 521 529 536 543 8 451 460 468 477 485 493 502 510 518 526 533 541 549 556 563 9 465 475 483 492 501 509 518 526 534 542 550 558 566 574 581 10 479 488 497 506 515 524 532 541 549 557 566 574 582 589 597 11 491 500 509 519 528 537 545 554 563 571 579 588 596 604 612 11.50 11.75 12.00 12.25 40572 41454 42336 43218 9.0 8.6 8.2 7.8 252 256 260 264 359 364 368 373 421 426 432 437 465 471 477 483 499 505 512 518 527 534 540 547 550 557 564 571 571 578 585 592 589 596 604 611 605 613 620 628 620 627 635 643

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 Energy (lbs-ft.) 27342 28224 29106 29988 30870 31752 32634 33516 34398 35280 36162 37044 37926 38808 39690 Nb (blows/inch) 38.4 35.0 32.0 29.4 27.1 25.0 23.2 21.6 20.2 18.9 17.7 16.6 15.6 14.8 14.0 1 189 194 199 203 207 212 216 220 225 229 233 237 241 245 249 2 276 283 288 294 300 306 311 317 322 328 333 338 343 349 354 3 327 334 341 348 354 361 367 373 379 386 392 398 403 409 415 4 364 371 378 386 393 400 406 413 420 427 433 440 446 452 459 5 392 399 407 415 422 430 437 444 451 458 465 472 479 486 492 6 415 423 431 439 447 454 462 470 477 484 492 499 506 513 520 7 434 442 451 459 467 475 483 491 499 506 514 521 529 536 543 8 451 460 468 477 485 493 502 510 518 526 533 541 549 556 563 9 465 475 483 492 501 509 518 526 534 542 550 558 566 574 581 10 479 488 497 506 515 524 532 541 549 557 566 574 582 589 597 11 491 500 509 519 528 537 545 554 563 571 579 588 596 604 612 11.50 11.75 12.00 12.25 40572 41454 42336 43218 13.2 12.6 11.9 11.4 252 256 260 264 359 364 368 373 421 426 432 437 465 471 477 483 499 505 512 518 527 534 540 547 550 557 564 571 571 578 585 592 589 596 604 611 605 613 620 628 620 627 635 643

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 Energy (lbs-ft.) 27342 28224 29106 29988 30870 31752 32634 33516 34398 35280 36162 37044 37926 38808 39690 Energy x "U" 26520 27376 28231 29087 29942 30798 31653 32509 33364 34220 35075 35931 36786 37642 38497 Nb (blows/inch) 26.2 24.0 22.0 20.3 18.8 17.5 16.3 15.3 14.3 13.4 12.7 11.9 11.3 10.7 10.2 1 185 190 194 198 203 207 211 216 220 224 228 232 236 240 243 2 271 277 283 288 294 300 305 311 316 321 326 332 337 342 347 3 321 328 334 341 347 354 360 366 372 378 384 390 396 402 407 4 357 364 371 378 385 392 399 405 412 419 425 431 438 444 450 5 384 392 400 407 414 422 429 436 443 450 457 464 470 477 483 6 407 415 423 431 438 446 454 461 468 476 483 490 497 504 511 7 426 434 443 451 459 467 474 482 490 497 505 512 519 526 534 8 442 451 460 468 476 484 493 500 508 516 524 531 539 546 553 9 457 466 475 483 492 500 508 517 525 533 540 548 556 564 571 10 470 479 488 497 506 514 523 531 539 547 555 563 571 579 587 11 482 491 500 509 518 527 536 544 553 561 569 577 585 593 601 11.50 11.75 12.00 12.25 40572 41454 42336 43218 39353 40208 41064 41919 9.7 9.2 8.8 8.4 247 251 255 258 352 357 361 366 413 418 424 429 456 462 468 474 490 496 502 509 517 524 531 537 541 547 554 561 561 568 575 582 578 586 593 600 594 602 609 617 609 616 624 631

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 7.75 8.00 8.25 8.50 8.75 9.00 9.25 9.50 9.75 10.00 10.25 10.50 10.75 11.00 11.25 Energy (lbs-ft.) 27342 28224 29106 29988 30870 31752 32634 33516 34398 35280 36162 37044 37926 38808 39690 Energy x "U" 26520 27376 28231 29087 29942 30798 31653 32509 33364 34220 35075 35931 36786 37642 38497 Nb (blows/inch) 42.1 38.3 35.0 32.1 29.5 27.2 25.2 23.5 21.9 20.4 19.1 18.0 16.9 16.0 15.1 1 185 190 194 198 203 207 211 216 220 224 228 232 236 240 243 2 271 277 283 288 294 300 305 311 316 321 326 332 337 342 347 3 321 328 334 341 347 354 360 366 372 378 384 390 396 402 407 4 357 364 371 378 385 392 399 405 412 419 425 431 438 444 450 5 384 392 400 407 414 422 429 436 443 450 457 464 470 477 483 6 407 415 423 431 438 446 454 461 468 476 483 490 497 504 511 7 426 434 443 451 459 467 474 482 490 497 505 512 519 526 534 8 442 451 460 468 476 484 493 500 508 516 524 531 539 546 553 9 457 466 475 483 492 500 508 517 525 533 540 548 556 564 571 10 470 479 488 497 506 514 523 531 539 547 555 563 571 579 587 11 482 491 500 509 518 527 536 544 553 561 569 577 585 593 601 11.50 11.75 12.00 12.25 40572 41454 42336 43218 39353 40208 41064 41919 14.3 13.5 12.9 12.2 247 251 255 258 352 357 361 366 413 418 424 429 456 462 468 474 490 496 502 509 517 524 531 537 541 547 554 561 561 568 575 582 578 586 593 600 594 602 609 617 609 616 624 631

This hammer meets requirements, but must be operated near it maximum energy to achieve Nominal Required Bearing. If Test Pile is required, hammer cannot be used.

55

From CM Section 512 with additional information

STRUCTURES

56

From CM Section 512 with additional information

STRUCTURES

EXAMPLE B TYPICAL COMPUTATIONS: Air/Steam Hammer - Precast Concrete Pile

Given: Type & Size: 14 in x 14 in x 50 ft Precast Concrete Pile

Nominal Required Bearing 256 kips Factored Resistance Available: 108 kips

Est Length: 60 ft.

The contractor proposes to use: Vulcan 506 weight of striking parts: 6,500 pounds (2948 kg ) Height of Fall 5 foot (1.5m) Rated Energy 32,500 ft-lbs. (44.1 kJ) Weight of Drive Cap = 1080 lbs (491 kg) 1 cubic foot concrete = 150 lbs (1 cubic meter concrete = 2403 kg) Check acceptability of chosen air/steam hammer. Check Weight of Striking Parts and Hammer Energy Requirements Check weight of striking parts ENGLISH (14/12)(14/12)50ft)*(150 lb/cu ft) +1080 # (helmet) = 11,288 pounds 11,288/3 = 3,763 lbs 3763 # < 6500 # & 6500# > 1.4 tons therefore hammer is OK Minimum required hammer energy E> 0.082 x [RN + 100]2 (English) 32,500> 0.082(256+100)2 ? Yes (10,392) OK Maximum allowable Hammer energy E< 0.193 x [RN + 100]2 32,500 < 0.193 x [256 + 100]2 ? (24,460) NO Hammer exceeds MAXIMUM energy allowable Determine Maximum allowable fall H E = WH | 24460 = 6500 * H | 34,233 = 2948(9.806) * h H = 3.76' (1.18 m)

Unless this hammer can operate at a fall of less than 3.76 feet (1.18 m), this hammer cannot be used

METRIC (.352)(.352)(15m)*(2403kg/cu m) +491 kg (helmet) = 4957 kg 4957/3 = 1652 kg 1652 kg < 2948 kg & 2948kg>1.3 M Tons therefore hammer is OK

E> 0.005 x [RN + 550]2 (Metric) 44.1 > 0.005(1139+550) 2 ? Yes... OK

E< 0.012 x [RN + 550]2 44,100 < 0.012 x [1139 + 550]2 ? (34,233) NO

57

From CM Section 512 with additional information

STRUCTURES

Many Vulcan hammers can add a device to reduce the hammer's delivered energy to as little as 1/3 of the rated value, CHECK the specific hammer's energy rating as configured.

How Vulcan Hammers can be modified to alter the delivered energy.

58

From CM Section 512 with additional information

STRUCTURES

EXAMPLE C TYPICAL COMPUTATIONS ­ Drop Hammer ­ Timber Pile

Given:

Type & Size: Timber Pile

Nominal Required Bearing 153 kips Allowable Resistance Available: 51 kips

Est Length: 24 ft. Outside Rows to be driven on 12:2 V : H batter

Contractor proposes to use: : Drop Hammer Ram Weight = 2500 lbs Height of Fall = MAXIMUM 15 ft Determine if hammer is correctly sized: Energy Developed by the hammer (E) vertical Pile = Height Fall * Weight Ram = 2500 * 15 = 37,500 Ft lbs MAXIMUM Energy Developed by the hammer (E) battered Pile = Height Fall * Weight Ram * Hammer Energy Reduction coefficient "U" U for 12:2 (V:H) = .945 (from Table in Section 512) Determine Fall Heights to meet Energy requirements for Vertical Pile: Minimum required hammer energy Is E > 0.082 x [RN + 100]2 ? YES! E > 0.082 x [RN + 100] 2= 5,248 ft-lbs Drop required to achieve MINIMUM energy 5248 > Wt Hammer x Height Fall 5248 > 2500 x Ht Fall Minimum Height Fall = 5248/2500 = 2.1 feet Maximum allowable Hammer energy E< 0.193 x [RN + 100] 2 ? NO! E not < 0.193 x [153 + 100] 2 (=12,353 ft-lbs) Must restrict Height of Hammer Fall How much? Maximum Energy = 12,353 = Ht Fall * 2500 # Maximum Ht Fall = 4.9 feet

Hammer must be operated at an average of between 2 and 5 foot fall at final bearing to meet energy requirements Determine Fall Heights to meet Energy requirements for Battered Pile Adjust the hammer energy above by the Hammer Energy Reduction coefficient "U" (The minimum and maximum energies requirements to drive the 153 kip pile remain the same, but the energy the hammer develops is reduced). The weight of hammer remains the same, so distance the hammer falls along the batter must increase to accommodate the loss of energy due to the batter. Minimum hammer fall to achieve E Maximum hammer fall to restrict E 5,248 = 2500 # * Ht fall * .945 12353 = 2500 # * Ht Fall * .945 Ht fall = 5248 / (2500 # * .945) = 2.22' Ht fall = 12353 / (2500 # * .945) = 5.23' Ht Fall = 2.22' average Ht Fall at final bearing Ht Fall = 5.23' average Ht fall at final bearing Hammer must be operated at an average of between 2¼ and 5¼ foot fall at final bearing to meet energy requirements

59

From CM Section 512 with additional information

STRUCTURES

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 153 kips Min. Required Hammer Energy (Production): 5249 ft-lbs Max. Required Hammer Energy (Production): 12354 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Kenny T1000 Type (Diesel, Air/steam, Drop): Drop Action (Single or Double Acting): Single Minimum Visible Fall Height: 2 ft. Max. Operating Fall Height: 12 ft. Ram Weight: 2500 lbs Test Pile - Nominal Requird Bearing: 168.3 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.945 Modified on 12/27/07 5903 ft-lbs 13893 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.00 2500 77.9 -13 14 29 40 49 56 61 67 71 75 79 2.00 5000 11.1 24 61 83 98 110 120 128 135 142 147 153 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 4.7 2.8 2.0 1.5 1.2 1.1 0.9 0.8 0.7 0.7 0.6 0.6 0.6 52 75 96 114 132 147 163 177 190 203 215 227 239 97 128 155 179 201 222 242 260 278 294 310 326 341 124 158 189 217 242 266 288 309 329 348 366 384 401 143 180 213 243 271 296 321 343 365 386 405 425 443 157 197 232 264 293 320 346 370 393 415 436 456 476 169 211 248 281 312 340 367 392 416 439 461 482 503 180 223 261 295 327 357 384 411 435 459 482 504 525 188 233 272 308 341 371 400 427 452 477 500 523 545 196 242 282 319 352 384 413 441 467 492 517 540 562 203 250 291 329 363 395 425 453 480 506 531 555 578 209 257 299 338 373 405 436 465 492 519 544 568 592 16.00 17.00 18.00 19.00 40000 42500 45000 47500 0.5 0.5 0.5 0.5 250 261 271 281 355 369 383 396 417 433 448 463 461 478 495 511 495 513 531 548 522 542 560 578 546 566 585 604 566 587 606 626 584 605 625 645 600 622 642 663 614 636 658 679

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 1.00 Energy (lbs-ft.) 2500 Nb (blows/inch) 116.5 1 -13 2 14 3 29 4 40 5 49 6 56 7 61 8 67 9 71 10 75 11 79 2.00 5000 14.7 24 61 83 98 110 120 128 135 142 147 153 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 5.9 3.4 2.4 1.8 1.4 1.2 1.1 0.9 0.8 0.8 0.7 0.7 0.6 52 75 96 114 132 147 163 177 190 203 215 227 239 97 128 155 179 201 222 242 260 278 294 310 326 341 124 158 189 217 242 266 288 309 329 348 366 384 401 143 180 213 243 271 296 321 343 365 386 405 425 443 157 197 232 264 293 320 346 370 393 415 436 456 476 169 211 248 281 312 340 367 392 416 439 461 482 503 180 223 261 295 327 357 384 411 435 459 482 504 525 188 233 272 308 341 371 400 427 452 477 500 523 545 196 242 282 319 352 384 413 441 467 492 517 540 562 203 250 291 329 363 395 425 453 480 506 531 555 578 209 257 299 338 373 405 436 465 492 519 544 568 592 16.00 17.00 18.00 19.00 40000 42500 45000 47500 0.6 0.6 0.5 0.5 250 261 271 281 355 369 383 396 417 433 448 463 461 478 495 511 495 513 531 548 522 542 560 578 546 566 585 604 566 587 606 626 584 605 625 645 600 622 642 663 614 636 658 679

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Energy x "U" Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.00 2500 2363 94.2 -15 11 26 36 45 51 57 62 66 70 74 2.00 5000 4726 12.7 20 57 78 93 104 114 122 129 135 141 146 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 7090 9453 11816 14179 16543 18906 21269 23632 25996 28359 30722 33085 35449 5.2 3.1 2.1 1.6 1.3 1.1 1.0 0.9 0.8 0.7 0.7 0.6 0.6 47 70 90 108 125 141 155 169 182 195 207 218 229 92 121 147 171 193 213 232 250 267 283 299 314 329 118 151 181 208 232 255 277 297 317 335 353 370 387 136 173 205 234 261 285 309 331 352 372 391 410 428 150 189 223 254 282 309 334 357 379 401 421 441 460 162 203 238 271 300 328 354 378 402 424 445 466 486 172 214 251 284 315 344 371 396 421 444 466 487 508 180 224 262 297 328 358 386 412 437 461 484 506 527 188 233 272 307 340 370 399 426 451 476 499 522 544 195 240 280 317 350 381 410 438 464 489 513 537 559 201 247 288 325 359 391 421 449 476 502 526 550 573 16.00 17.00 18.00 19.00 40000 42500 45000 47500 37812 40175 42538 44901 0.6 0.5 0.5 0.5 240 251 261 271 343 356 370 382 403 418 433 448 445 462 478 494 478 496 513 530 505 524 542 559 528 547 566 584 548 568 587 606 565 585 605 625 581 602 622 642 595 616 637 657

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 1.00 Energy (lbs-ft.) 2500 Energy x "U" 2363 Nb (blows/inch) 142.5 1 -15 2 11 3 26 4 36 5 45 6 51 7 57 8 62 9 66 10 70 11 74 2.00 5000 4726 17.0 20 57 78 93 104 114 122 129 135 141 146 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 7090 9453 11816 14179 16543 18906 21269 23632 25996 28359 30722 33085 35449 6.6 3.8 2.6 1.9 1.6 1.3 1.1 1.0 0.9 0.8 0.7 0.7 0.7 47 70 90 108 125 141 155 169 182 195 207 218 229 92 121 147 171 193 213 232 250 267 283 299 314 329 118 151 181 208 232 255 277 297 317 335 353 370 387 136 173 205 234 261 285 309 331 352 372 391 410 428 150 189 223 254 282 309 334 357 379 401 421 441 460 162 203 238 271 300 328 354 378 402 424 445 466 486 172 214 251 284 315 344 371 396 421 444 466 487 508 180 224 262 297 328 358 386 412 437 461 484 506 527 188 233 272 307 340 370 399 426 451 476 499 522 544 195 240 280 317 350 381 410 438 464 489 513 537 559 201 247 288 325 359 391 421 449 476 502 526 550 573 16.00 17.00 18.00 19.00 40000 42500 45000 47500 37812 40175 42538 44901 0.6 0.6 0.6 0.5 240 251 261 271 343 356 370 382 403 418 433 448 445 462 478 494 478 496 513 530 505 524 542 559 528 547 566 584 548 568 587 606 565 585 605 625 581 602 622 642 595 616 637 657

60

From CM Section 512 with additional information

STRUCTURES

You can also refine the range to include only those drops providing good bearing...

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 153 kips Min. Required Hammer Energy (Production): 5249 ft-lbs Max. Required Hammer Energy (Production): 12354 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Kenny T1000 Type (Diesel, Air/steam, Drop): Drop Action (Single or Double Acting): Single Minimum Visible Fall Height: 2 ft. Max. Operating Fall Height: 7 ft. Ram Weight: 2500 lbs Test Pile - Nominal Requird Bearing: 168.3 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.945 Modified on 12/27/07 5903 ft-lbs 13893 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.50 3750 23.0 7 39 58 72 82 91 98 104 109 114 119 2.00 5000 11.1 24 61 83 98 110 120 128 135 142 147 153 2.50 6250 6.7 38 80 104 122 135 146 155 163 170 177 182 3.00 7500 4.7 52 97 124 143 157 169 180 188 196 203 209 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 8750 10000 11250 12500 13750 15000 16250 17500 18750 20000 21250 3.5 2.8 2.3 2.0 1.7 1.5 1.4 1.2 1.1 1.1 1.0 64 75 86 96 105 114 123 132 140 147 155 113 128 141 155 167 179 190 201 212 222 232 142 158 174 189 203 217 230 242 254 266 277 162 180 197 213 229 243 257 271 284 296 309 178 197 215 232 249 264 279 293 307 320 333 191 211 230 248 265 281 297 312 326 340 354 202 223 242 261 279 295 312 327 342 357 371 212 233 253 272 291 308 325 341 356 371 385 220 242 263 282 301 319 336 352 368 384 399 227 250 271 291 310 329 346 363 379 395 410 234 257 279 299 319 338 355 373 389 405 421 9.00 9.50 10.00 10.50 22500 23750 25000 26250 0.9 0.9 0.8 0.8 163 170 177 184 242 251 260 269 288 298 309 319 321 332 343 354 346 358 370 382 367 380 392 404 384 398 411 423 400 413 427 440 413 427 441 454 425 439 453 467 436 451 465 479

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.50 3750 31.9 7 39 58 72 82 91 98 104 109 114 119 2.00 5000 14.7 24 61 83 98 110 120 128 135 142 147 153 2.50 6250 8.7 38 80 104 122 135 146 155 163 170 177 182 3.00 7500 5.9 52 97 124 143 157 169 180 188 196 203 209 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 8750 10000 11250 12500 13750 15000 16250 17500 18750 20000 21250 4.4 3.4 2.8 2.4 2.0 1.8 1.6 1.4 1.3 1.2 1.1 64 75 86 96 105 114 123 132 140 147 155 113 128 141 155 167 179 190 201 212 222 232 142 158 174 189 203 217 230 242 254 266 277 162 180 197 213 229 243 257 271 284 296 309 178 197 215 232 249 264 279 293 307 320 333 191 211 230 248 265 281 297 312 326 340 354 202 223 242 261 279 295 312 327 342 357 371 212 233 253 272 291 308 325 341 356 371 385 220 242 263 282 301 319 336 352 368 384 399 227 250 271 291 310 329 346 363 379 395 410 234 257 279 299 319 338 355 373 389 405 421 9.00 9.50 10.00 10.50 22500 23750 25000 26250 1.1 1.0 0.9 0.9 163 170 177 184 242 251 260 269 288 298 309 319 321 332 343 354 346 358 370 382 367 380 392 404 384 398 411 423 400 413 427 440 413 427 441 454 425 439 453 467 436 451 465 479

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Energy x "U" Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.50 3750 3545 26.8 4 36 54 67 77 85 92 98 104 108 113 2.00 5000 4726 12.7 20 57 78 93 104 114 122 129 135 141 146 2.50 6250 5908 7.6 35 75 99 115 129 139 148 156 163 169 175 3.00 7500 7090 5.2 47 92 118 136 150 162 172 180 188 195 201 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 8750 10000 11250 12500 13750 15000 16250 17500 18750 20000 21250 8271 9453 10635 11816 12998 14179 15361 16543 17724 18906 20088 3.9 3.1 2.5 2.1 1.9 1.6 1.5 1.3 1.2 1.1 1.0 59 70 80 90 100 108 117 125 133 141 148 107 121 135 147 160 171 182 193 203 213 223 135 151 167 181 195 208 220 232 244 255 266 155 173 189 205 220 234 247 261 273 285 297 170 189 207 223 239 254 268 282 296 309 321 183 203 221 238 255 271 286 300 314 328 341 194 214 233 251 268 284 300 315 330 344 358 203 224 243 262 280 297 313 328 343 358 372 211 233 253 272 290 307 324 340 355 370 385 218 240 261 280 299 317 334 350 366 381 396 225 247 268 288 307 325 343 359 376 391 406 9.00 9.50 10.00 10.50 22500 23750 25000 26250 21269 22451 23632 24814 1.0 0.9 0.9 0.8 155 162 169 176 232 241 250 259 277 287 297 307 309 320 331 342 334 345 357 368 354 366 378 390 371 384 396 409 386 399 412 425 399 412 426 439 410 424 438 451 421 435 449 463

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) Energy (lbs-ft.) Energy x "U" Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 1.50 3750 3545 37.6 4 36 54 67 77 85 92 98 104 108 113 2.00 5000 4726 17.0 20 57 78 93 104 114 122 129 135 141 146 2.50 6250 5908 9.9 35 75 99 115 129 139 148 156 163 169 175 3.00 7500 7090 6.6 47 92 118 136 150 162 172 180 188 195 201 3.50 4.00 4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 8750 10000 11250 12500 13750 15000 16250 17500 18750 20000 21250 8271 9453 10635 11816 12998 14179 15361 16543 17724 18906 20088 4.9 3.8 3.1 2.6 2.2 1.9 1.7 1.6 1.4 1.3 1.2 59 70 80 90 100 108 117 125 133 141 148 107 121 135 147 160 171 182 193 203 213 223 135 151 167 181 195 208 220 232 244 255 266 155 173 189 205 220 234 247 261 273 285 297 170 189 207 223 239 254 268 282 296 309 321 183 203 221 238 255 271 286 300 314 328 341 194 214 233 251 268 284 300 315 330 344 358 203 224 243 262 280 297 313 328 343 358 372 211 233 253 272 290 307 324 340 355 370 385 218 240 261 280 299 317 334 350 366 381 396 225 247 268 288 307 325 343 359 376 391 406 9.00 9.50 10.00 10.50 22500 23750 25000 26250 21269 22451 23632 24814 1.1 1.1 1.0 0.9 155 162 169 176 232 241 250 259 277 287 297 307 309 320 331 342 334 345 357 368 354 366 378 390 371 384 396 409 386 399 412 425 399 412 426 439 410 424 438 451 421 435 449 463

61

From CM Section 512 with additional information

STRUCTURES

62

From CM Section 512 with additional information EXAMPLE D Link Belt Model 440 Hammer correlation Chart

STRUCTURES

63

From CM Section 512 with additional information EXAMPLE D TYPICAL COMPUTATIONS ­ Metal Shell Pile ­ Double-Acting Hammer

STRUCTURES

Given:

Metal Shell ­ 12 in. dia x 0.179 in. walls Nominal Required Bearing: 256 kips Allowable Resistance Available: 85 kips Est Length: 65 ft.

Contractor proposes to use a: Link-belt 440 hammer Ram Weight = 4000 lbs Maximum Energy Developed by the Hammer per blow (E) = 18,200 Ft-lbs.

Energy developed by the hammer (E) = read via Bounce Chamber pressure gage based on length of hose. In this example, the contractor provided the following data sheet and is using an 80 foot hose. Different lengths of hose can greatly affect the energy rating for the hammer. PLEASE NOTE Different hammers may have different charts. Use the chart for the hammer provided.

Determine if hammer is correctly sized: Determine Energy for Vertical Pile: Minimum required hammer energy E > 0.082 x [RN + 100] 18,200 > 10,392

2

Maximum allowable Hammer energy E < 0.193 x [RN + 100]2 E < 0.193 x [256 + 100]2 =24,460 ft-lbs 18,200 < 24,460 ft-lbs.

E > 0.082 x [256 + 100]2= 10,392 ft-lbs

Hammer is acceptable From the provided chart, minimum pressure reading allowed is 9.0, since readings less than 9 do not correlate to energies greater than 10,392 foot­pounds. Hammer meets energy requirements to set pile at between 2 and 10 blows per inch. Chart RNDB for various hammer energies and blows per inch within the above range. After creating your table of Hammer energies, determine the corresponding gauge readings related to those energies for use while driving the piling.

64

From CM Section 512 with additional information

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 256 kips Min. Required Hammer Energy (Production): 10392 ft-lbs Max. Required Hammer Energy (Production): 24460 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Link-belt 440 Type (Diesel, Air/steam, Drop): Air/Steam Action (Single or Double Acting): Double Minimum Readable Energy: 10300 ft-lbs Maximum Operating Energy: 18300 ft-lbs 2500 Test Pile - Nominal Requird Bearing: 281.6 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.970

STRUCTURES

Modified on 12/27/07 11941 ft-lbs 28104 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Pressure Energy (lbs-ft.) Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 9.0 9.6 10.1 10.7 11.3 11.9 12.4 13.0 13.6 14.1 14.7 15.3 15.8 16.4 9800 10300 10800 11300 11800 12300 12800 13300 13800 14300 14800 15300 15800 16300 16800 11.3 10.1 9.1 8.2 7.5 6.8 6.3 5.8 5.4 5.0 4.7 4.4 4.2 3.9 3.7 73 78 82 86 90 94 98 102 106 109 113 116 120 123 127 125 131 137 142 147 153 158 163 167 172 177 182 186 191 195 156 162 169 175 181 187 192 198 204 209 214 220 225 230 235 178 185 191 198 205 211 217 223 229 235 241 247 252 258 263 194 202 209 216 223 230 236 243 249 256 262 268 274 280 285 208 216 223 231 238 245 252 259 266 272 279 285 291 297 303 220 228 236 243 251 258 265 272 279 286 293 299 306 312 319 230 238 246 254 262 269 277 284 291 298 305 312 319 325 332 239 247 255 264 271 279 287 294 302 309 316 323 330 337 343 246 255 264 272 280 288 296 304 311 319 326 333 340 347 354 254 263 271 280 288 296 304 312 320 327 335 342 349 356 363 17.0 17.6 18.1 17300 17800 18300 18800 3.5 3.3 3.2 3.0 130 133 137 140 199 204 208 212 240 245 250 254 269 274 279 284 291 297 302 308 309 315 321 327 325 331 337 343 338 344 351 357 350 356 363 369 360 367 373 380 370 377 383 390

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Pressure Energy (lbs-ft.) Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 9.0 9.6 10.1 10.7 11.3 11.9 12.4 13.0 13.6 14.1 14.7 15.3 15.8 16.4 9800 10300 10800 11300 11800 12300 12800 13300 13800 14300 14800 15300 15800 16300 16800 15.9 14.1 12.5 11.3 10.2 9.3 8.5 7.8 7.2 6.7 6.2 5.8 5.4 5.1 4.8 73 78 82 86 90 94 98 102 106 109 113 116 120 123 127 125 131 137 142 147 153 158 163 167 172 177 182 186 191 195 156 162 169 175 181 187 192 198 204 209 214 220 225 230 235 178 185 191 198 205 211 217 223 229 235 241 247 252 258 263 194 202 209 216 223 230 236 243 249 256 262 268 274 280 285 208 216 223 231 238 245 252 259 266 272 279 285 291 297 303 220 228 236 243 251 258 265 272 279 286 293 299 306 312 319 230 238 246 254 262 269 277 284 291 298 305 312 319 325 332 239 247 255 264 271 279 287 294 302 309 316 323 330 337 343 246 255 264 272 280 288 296 304 311 319 326 333 340 347 354 254 263 271 280 288 296 304 312 320 327 335 342 349 356 363 17.0 17.6 18.1 17300 17800 18300 18800 4.5 4.3 4.1 3.9 130 133 137 140 199 204 208 212 240 245 250 254 269 274 279 284 291 297 302 308 309 315 321 327 325 331 337 343 338 344 351 357 350 356 363 369 360 367 373 380 370 377 383 390

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Pressure Energy (lbs-ft.) Energy x "U" Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 9.0 9.6 10.1 10.7 11.3 11.9 12.4 13.0 13.6 14.1 14.7 15.3 15.8 16.4 9800 10300 10800 11300 11800 12300 12800 13300 13800 14300 14800 15300 15800 16300 16800 9506 9991 10476 10960 11445 11930 12415 12900 13385 13870 14355 14840 15325 15810 16295 12.2 10.8 9.7 8.8 8.0 7.3 6.7 6.2 5.7 5.3 5.0 4.7 4.4 4.1 3.9 71 75 79 83 87 91 95 99 102 106 110 113 117 120 123 122 128 133 138 144 149 154 159 163 168 173 177 182 186 191 152 158 165 171 177 182 188 194 199 204 210 215 220 225 230 173 180 187 194 200 206 212 218 224 230 236 242 247 253 258 190 197 204 211 218 225 231 238 244 250 256 262 268 274 280 203 211 218 226 233 240 247 253 260 266 273 279 285 291 297 215 223 230 238 245 253 260 267 274 280 287 293 300 306 312 225 233 241 249 256 264 271 278 285 292 299 306 312 319 325 233 242 250 258 266 274 281 288 296 303 310 317 323 330 337 241 250 258 266 274 282 290 298 305 312 319 326 333 340 347 248 257 266 274 282 290 298 306 313 321 328 335 342 349 356 17.0 17.6 18.1 17300 17800 18300 18800 16780 17265 17750 18235 3.7 3.5 3.4 3.2 127 130 133 136 195 199 203 207 235 240 244 249 263 268 274 279 285 291 296 301 303 309 315 320 318 324 330 336 331 338 344 350 343 349 356 362 353 360 366 373 363 369 376 382

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Pressure Energy (lbs-ft.) Energy x "U" Nb (blows/inch) 1 2 3 4 5 6 7 8 9 10 11 9.0 9.6 10.1 10.7 11.3 11.9 12.4 13.0 13.6 14.1 14.7 15.3 15.8 16.4 9800 10300 10800 11300 11800 12300 12800 13300 13800 14300 14800 15300 15800 16300 16800 9506 9991 10476 10960 11445 11930 12415 12900 13385 13870 14355 14840 15325 15810 16295 17.2 15.2 13.5 12.1 10.9 9.9 9.1 8.3 7.7 7.1 6.6 6.2 5.8 5.4 5.1 71 75 79 83 87 91 95 99 102 106 110 113 117 120 123 122 128 133 138 144 149 154 159 163 168 173 177 182 186 191 152 158 165 171 177 182 188 194 199 204 210 215 220 225 230 173 180 187 194 200 206 212 218 224 230 236 242 247 253 258 190 197 204 211 218 225 231 238 244 250 256 262 268 274 280 203 211 218 226 233 240 247 253 260 266 273 279 285 291 297 215 223 230 238 245 253 260 267 274 280 287 293 300 306 312 225 233 241 249 256 264 271 278 285 292 299 306 312 319 325 233 242 250 258 266 274 281 288 296 303 310 317 323 330 337 241 250 258 266 274 282 290 298 305 312 319 326 333 340 347 248 257 266 274 282 290 298 306 313 321 328 335 342 349 356 17.0 17.6 18.1 17300 17800 18300 18800 16780 17265 17750 18235 4.8 4.6 4.3 4.1 127 130 133 136 195 199 203 207 235 240 244 249 263 268 274 279 285 291 296 301 303 309 315 320 318 324 330 336 331 338 344 350 343 349 356 362 353 360 366 373 363 369 376 382

65

From CM Section 512 with additional information

STRUCTURES

66

Class Problem #1: Solution Contractor has requested to use a Vulcan #010 Hammer to install the following piling: Type & Size: Metal Shell ­ 14 in. dia x 0.25 in. walls Nominal Required Bearing: 383 kips Allowable Resistance Available: 127 kips Est Length: 65 ft.

Is the hammer acceptable? How many blows per inch are required at bearing?

Vulcan #010 Hammer ­ Single Acting Air/Steam Fixed stroke 39 in. Rated Operating Hammer Energy 32,500 ft-lbs Weight (W) = 10,000 #

Solution:

This type hammer must have ram weight >.1.4 tons, and Ram weight > 1/3 the combined weight of Pile Cap and Pile. The Weight of Ram = 10,000#, which is greater than 1.4 tons - OK The weight of the pile cap = 895#; and the weight of the Pile = 65' x 36.71#/LF = 2386.2# 1/3(895# + 2386.2#) = 3281#/3 = 1093.7# which is much less than ram weight. - OK

Minimum Required Hammer Energy E> 0.082 x [RN + 100]2 = 0.082 x [383 + 100]2 E> 19,130 ft-lbs OK Maximum Allowable Hammer Energy E< 0.193 x [RN + 100]2 = 0.193 x [383 + 100]2 E< 45,025 ft-lbs OK

Maximum energy is between Minimum required and Maximum allowable. Hammer is acceptable, but must achieve at least a 2 foot hammer drop at final bearing of the pile to not exceed 10 blows per inch.

Set up Nominal Driven Bearing Chart vs. Various Hammer Blows per inch of pile penetration (Nb) and Hammer Energies (E)

RNDB 1.75 E Log (10 Nb) 100

Assume a full 39" stroke when Nominal Driven Bearing approaches RN, What Number of Blows per inch of Pile penetration are you looking for?

R N 100

1.75 E

Nb

10

10

Since E at full stroke is 32,500, solving for Nb= ( 10

^ (383+100)/1.75(32,500) / 10

1/2)

Nb =3.4 blows per inch (Average) (Check for Nb =3.4 blows per inch yields RNDB = 383 kips )

67

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 383 kips Min. Required Hammer Energy (Production): 19130 ft-lbs Max. Required Hammer Energy (Production): 45025 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Vulcan #010 Type (Diesel, Air/steam, Drop): Air/Steam Action (Single or Double Acting): Single Minimum Visible Fall Height: 3.25 ft. Max. Operating Fall Height: 3.25 ft. Ram Weight: 10000 lbs Test Pile - Nominal Requird Bearing: 421.3 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.970 Modified on 12/27/07 22284 ft-lbs 52448 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 Energy (lbs-ft.) 30000 32500 35000 37500 40000 42500 45000 47500 50000 52500 55000 57500 60000 62500 65000 67500 70000 72500 75000 Nb (blows/inch) 3.9 3.4 3.0 2.7 2.4 2.2 2.0 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.2 1.1 1.1 1.0 1 203 215 227 239 250 261 271 281 291 301 310 320 329 338 346 355 363 371 379 2 294 310 326 341 355 369 383 396 409 422 434 446 458 469 480 492 502 513 524 3 348 366 384 401 417 433 448 463 478 492 506 520 533 546 559 572 584 596 608 4 386 405 425 443 461 478 495 511 527 542 558 572 587 601 615 628 642 655 668 5 415 436 456 476 495 513 531 548 565 581 597 613 628 643 658 672 687 701 714 6 439 461 482 503 522 542 560 578 596 613 630 646 662 678 693 708 723 738 752 7 459 482 504 525 546 566 585 604 622 640 657 674 691 707 723 739 754 769 784 8 477 500 523 545 566 587 606 626 645 663 681 699 716 733 749 765 781 797 812 9 492 517 540 562 584 605 625 645 665 684 702 720 738 755 772 789 805 821 837 10 506 531 555 578 600 622 642 663 683 702 721 739 757 775 792 809 826 842 859 11 519 544 568 592 614 636 658 679 699 719 738 757 775 793 811 828 845 862 878

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 Energy (lbs-ft.) 30000 32500 35000 37500 40000 42500 45000 47500 50000 52500 55000 57500 60000 62500 65000 67500 70000 72500 75000 Nb (blows/inch) 5.2 4.5 3.9 3.5 3.1 2.8 2.5 2.3 2.1 2.0 1.9 1.7 1.6 1.6 1.5 1.4 1.3 1.3 1.2 1 203 215 227 239 250 261 271 281 291 301 310 320 329 338 346 355 363 371 379 2 294 310 326 341 355 369 383 396 409 422 434 446 458 469 480 492 502 513 524 3 348 366 384 401 417 433 448 463 478 492 506 520 533 546 559 572 584 596 608 4 386 405 425 443 461 478 495 511 527 542 558 572 587 601 615 628 642 655 668 5 415 436 456 476 495 513 531 548 565 581 597 613 628 643 658 672 687 701 714 6 439 461 482 503 522 542 560 578 596 613 630 646 662 678 693 708 723 738 752 7 459 482 504 525 546 566 585 604 622 640 657 674 691 707 723 739 754 769 784 8 477 500 523 545 566 587 606 626 645 663 681 699 716 733 749 765 781 797 812 9 492 517 540 562 584 605 625 645 665 684 702 720 738 755 772 789 805 821 837 10 506 531 555 578 600 622 642 663 683 702 721 739 757 775 792 809 826 842 859 11 519 544 568 592 614 636 658 679 699 719 738 757 775 793 811 828 845 862 878

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 Energy (lbs-ft.) 30000 32500 35000 37500 40000 42500 45000 47500 50000 52500 55000 57500 60000 62500 65000 67500 70000 72500 75000 Energy x "U" 29099 31524 33948 36373 38798 41223 43648 46073 48498 50923 53347 55772 58197 60622 63047 65472 67897 70322 72747 Nb (blows/inch) 4.1 3.6 3.1 2.8 2.5 2.3 2.1 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.3 1.2 1.1 1.1 1.1 1 199 211 222 234 245 255 266 276 285 295 304 313 322 331 339 348 356 364 372 2 288 304 320 334 348 362 376 389 401 414 426 438 449 461 472 483 493 504 514 3 341 359 376 393 409 425 440 455 469 483 497 510 524 536 549 561 574 585 597 4 378 398 417 435 452 469 486 502 517 533 548 562 576 590 604 617 631 643 656 5 407 428 448 467 486 504 521 538 555 571 587 602 617 632 647 661 675 688 702 6 431 452 473 493 513 532 550 568 585 602 619 635 651 666 681 696 711 725 739 7 451 473 495 516 536 556 575 593 611 629 646 663 679 695 711 726 741 756 771 8 468 491 514 535 556 576 596 615 633 652 669 687 703 720 736 752 768 783 798 9 483 507 530 552 574 594 614 634 653 672 690 708 725 742 759 775 791 807 822 10 497 521 545 568 589 611 631 651 671 690 708 727 744 762 779 796 812 828 844 11 509 534 558 581 604 625 646 667 687 706 725 744 762 780 797 814 831 847 864

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 Energy (lbs-ft.) 30000 32500 35000 37500 40000 42500 45000 47500 50000 52500 55000 57500 60000 62500 65000 67500 70000 72500 75000 Energy x "U" 29099 31524 33948 36373 38798 41223 43648 46073 48498 50923 53347 55772 58197 60622 63047 65472 67897 70322 72747 Nb (blows/inch) 5.6 4.8 4.1 3.6 3.3 2.9 2.7 2.4 2.3 2.1 1.9 1.8 1.7 1.6 1.5 1.5 1.4 1.3 1.3 1 199 211 222 234 245 255 266 276 285 295 304 313 322 331 339 348 356 364 372 2 288 304 320 334 348 362 376 389 401 414 426 438 449 461 472 483 493 504 514 3 341 359 376 393 409 425 440 455 469 483 497 510 524 536 549 561 574 585 597 4 378 398 417 435 452 469 486 502 517 533 548 562 576 590 604 617 631 643 656 5 407 428 448 467 486 504 521 538 555 571 587 602 617 632 647 661 675 688 702 6 431 452 473 493 513 532 550 568 585 602 619 635 651 666 681 696 711 725 739 7 451 473 495 516 536 556 575 593 611 629 646 663 679 695 711 726 741 756 771 8 468 491 514 535 556 576 596 615 633 652 669 687 703 720 736 752 768 783 798 9 483 507 530 552 574 594 614 634 653 672 690 708 725 742 759 775 791 807 822 10 497 521 545 568 589 611 631 651 671 690 708 727 744 762 779 796 812 828 844 11 509 534 558 581 604 625 646 667 687 706 725 744 762 780 797 814 831 847 864

68

69

Class Problem #2: Solution Contractor has requested to use a Delmag 36 Diesel Hammer to install the following piling: Type & Size: Steel HP12x53 Nominal Required Bearing: 418 kips Allowable Resistance Available: 139 kips Est Length: 60 ft. Is this hammer acceptable? How many blows per inch at final bearing? (assume 5' fall) Solution: Delmag 36 single acting Diesel hammer has a variable stroke with a Ram Weight (W) = 7940 #, and a Rated energy of 73,780 ft-pounds. The contractor believes a 5' fall will be maintained at Nominal Driven Bearing. This type hammer only must meet Minimum and Maximum Energy requirements Minimum Required Hammer Energy E> 0.082 x [RN + 100]2 = 0.082 x [418 + 100]2 E> 22,003 ft-lbs OK Maximum Allowable Hammer Energy E< 0.193 x [RN + 100]2 = 0.193 x [418 + 100]2 E NOT< 51,786 ft-lbs the contractor must restrict the fall of the hammer The maximum height of fall must not exceed: 51,786/7940 = 6.5 feet Hammer Energy can be maintained between Minimum required and Maximum allowable. Hammer is acceptable, but must maintain between a 2 foot and 6.5 foot ram fall when the Nominal Driven Bearing approaches the Nominal Required Bearing to meet 2 to 10 blows per inch spec. Set up Nominal Driven Bearing Chart vs. Various Hammer Blows per inch of pile penetration (Nb) and Hammer Energies (E)

RNDB 1.75 E Log (10 Nb) 100

Assume a full 5 foot stroke when Nominal Driven Bearing approaches RN, What Number of Blows per inch of Pile penetration are you looking for?

R N 100

1.75 E

Nb

10

10

Since E at 5' stroke is 39,700, Nb= (10 ^ (418+100)/1.75(39,700)1/2) / 10)

Nb =3.1 blows per inch (Average)

70

(Check for Nb =3.1 blows per inch yields RNDB = 420 kips )

INSPECTORS PILE BEARING TABLE

I.D.O.T. BBS CENTRAL GEOTECHNICAL UNIT Production Pile - Nominal Required Bearing: 418 kips Min. Required Hammer Energy (Production): 22003 ft-lbs Max. Required Hammer Energy (Production): 51787 ft-lbs Batter Pile Slope: 2 " horz. / 12" vert. Hammer Make & Model: Delmag 36 Type (Diesel, Air/steam, Drop): Diesel Action (Single or Double Acting): Single Minimum Visible Fall Height: 4.75 ft. Max. Operating Fall Height: 7.5 ft. Ram Weight: 7940 lbs Test Pile - Nominal Requird Bearing: 459.8 kips Min. Recommended Hammer Energy (Test): Max. Recommended Hammer Energy (Test): Hammer Energy Reduction Coef: 0.970 Modified on 12/27/07 25697 ft-lbs 60482 ft-lbs

Red values indicate not within Contract Requirements Blue values indicate not within Hammer Operating Range

Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 Energy (lbs-ft.) 35730 37715 39700 41685 43670 45655 47640 49625 51610 53595 55580 57565 59550 61535 63520 65505 67490 69475 71460 Nb (blows/inch) 3.7 3.3 3.1 2.8 2.6 2.4 2.3 2.1 2.0 1.9 1.8 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1.3 1 231 240 249 257 266 274 282 290 298 305 313 320 327 334 341 348 355 361 368 2 330 342 354 365 376 386 397 407 417 427 437 446 456 465 474 483 491 500 509 3 389 402 415 428 440 452 464 476 487 498 509 520 531 541 551 562 572 581 591 4 430 444 459 472 486 499 512 525 537 549 561 573 584 595 607 618 628 639 649 5 462 477 492 507 521 535 549 562 575 588 601 613 626 638 649 661 672 684 695 6 488 504 520 535 550 565 579 593 607 620 634 647 659 672 684 696 708 720 732 7 510 527 543 559 575 590 605 619 634 648 661 675 688 701 714 726 739 751 763 8 530 547 564 580 596 612 627 642 657 671 685 699 713 726 739 752 765 778 790 9 546 564 581 598 615 631 646 662 677 692 706 721 735 748 762 775 788 801 814 10 562 580 597 615 631 648 664 680 695 710 725 740 754 768 782 796 809 823 836 11 575 594 612 629 647 663 680 696 712 727 742 757 772 786 800 814 828 842 855

Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 Energy (lbs-ft.) 35730 37715 39700 41685 43670 45655 47640 49625 51610 53595 55580 57565 59550 61535 63520 65505 67490 69475 71460 Nb (blows/inch) 4.9 4.4 4.0 3.7 3.4 3.1 2.9 2.7 2.6 2.4 2.3 2.2 2.0 1.9 1.9 1.8 1.7 1.6 1.6 1 231 240 249 257 266 274 282 290 298 305 313 320 327 334 341 348 355 361 368 2 330 342 354 365 376 386 397 407 417 427 437 446 456 465 474 483 491 500 509 3 389 402 415 428 440 452 464 476 487 498 509 520 531 541 551 562 572 581 591 4 430 444 459 472 486 499 512 525 537 549 561 573 584 595 607 618 628 639 649 5 462 477 492 507 521 535 549 562 575 588 601 613 626 638 649 661 672 684 695 6 488 504 520 535 550 565 579 593 607 620 634 647 659 672 684 696 708 720 732 7 510 527 543 559 575 590 605 619 634 648 661 675 688 701 714 726 739 751 763 8 530 547 564 580 596 612 627 642 657 671 685 699 713 726 739 752 765 778 790 9 546 564 581 598 615 631 646 662 677 692 706 721 735 748 762 775 788 801 814 10 562 580 597 615 631 648 664 680 695 710 725 740 754 768 782 796 809 823 836 11 575 594 612 629 647 663 680 696 712 727 742 757 772 786 800 814 828 842 855

2:12 Batter Production Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 Energy (lbs-ft.) 35730 37715 39700 41685 43670 45655 47640 49625 51610 53595 55580 57565 59550 61535 63520 65505 67490 69475 71460 Energy x "U" 34656 36582 38507 40433 42358 44283 46209 48134 50059 51985 53910 55835 57761 59686 61611 63537 65462 67388 69313 Nb (blows/inch) 3.9 3.5 3.2 3.0 2.7 2.6 2.4 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.6 1.5 1.4 1.4 1.3 1 226 235 243 252 260 268 276 284 292 299 306 314 321 328 334 341 348 354 361 2 324 335 347 358 369 379 389 400 409 419 429 438 447 456 465 474 483 491 499 3 381 394 407 420 432 444 456 467 478 489 500 511 521 532 542 552 561 571 581 4 422 436 450 464 477 490 503 515 527 539 551 562 574 585 596 607 617 628 638 5 453 469 483 498 512 526 539 552 565 578 590 603 615 626 638 649 661 672 683 6 479 495 511 526 540 555 569 583 596 609 623 635 648 660 672 684 696 708 719 7 501 518 534 549 565 579 594 608 622 636 650 663 676 689 701 714 726 738 750 8 520 537 554 570 585 601 616 631 645 659 673 687 700 714 727 739 752 765 777 9 537 554 571 588 604 620 635 650 665 680 694 708 722 736 749 762 775 788 800 10 552 569 587 604 620 637 652 668 683 698 713 727 741 755 769 782 795 809 821 11 565 583 601 618 635 652 668 684 699 715 729 744 759 773 787 800 814 827 841

2:12 Batter Test Pile - Nominal Driven Bearing Table (Hammer Energy vs. Blows/inch)

Fall Height (ft.) 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75 8.00 8.25 8.50 8.75 9.00 Energy (lbs-ft.) 35730 37715 39700 41685 43670 45655 47640 49625 51610 53595 55580 57565 59550 61535 63520 65505 67490 69475 71460 Energy x "U" 34656 36582 38507 40433 42358 44283 46209 48134 50059 51985 53910 55835 57761 59686 61611 63537 65462 67388 69313 Nb (blows/inch) 5.2 4.7 4.3 3.9 3.6 3.3 3.1 2.9 2.7 2.5 2.4 2.3 2.1 2.0 1.9 1.9 1.8 1.7 1.6 1 226 235 243 252 260 268 276 284 292 299 306 314 321 328 334 341 348 354 361 2 324 335 347 358 369 379 389 400 409 419 429 438 447 456 465 474 483 491 499 3 381 394 407 420 432 444 456 467 478 489 500 511 521 532 542 552 561 571 581 4 422 436 450 464 477 490 503 515 527 539 551 562 574 585 596 607 617 628 638 5 453 469 483 498 512 526 539 552 565 578 590 603 615 626 638 649 661 672 683 6 479 495 511 526 540 555 569 583 596 609 623 635 648 660 672 684 696 708 719 7 501 518 534 549 565 579 594 608 622 636 650 663 676 689 701 714 726 738 750 8 520 537 554 570 585 601 616 631 645 659 673 687 700 714 727 739 752 765 777 9 537 554 571 588 604 620 635 650 665 680 694 708 722 736 749 762 775 788 800 10 552 569 587 604 620 637 652 668 683 698 713 727 741 755 769 782 795 809 821 11 565 583 601 618 635 652 668 684 699 715 729 744 759 773 787 800 814 827 841

71

72

Class Problem #3 - Solution

Determining Pay Quantities

Authorized Furnished Length (by Letter) 50 50 50 50 50 50 50 Delivered Length* 50 55 45 55 50 50 25 Added Splice Length 101 102 252 Cut Off Length 3 3 3 10 2 2 1 Total Pay Length Furnish 50 52 45 50 50+FRC Splice 60+FRC Splice 50 no splice 357 Drive 47 52 42 45 58 58 49 351

* AS MEASURED IN THE FIELD 1. STATE FURNISHED SPLICE LENGTH. 2. CONTRACTOR FURNISHED SPLICE LENGTH.

73

APPENDIX Standards, Symbols, etc.

74

75

76

77

78

79

80

81

82

83

Information

SPECIFIC TASK TRAINING PROGRAM 2001 handout

89 pages

Find more like this

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

43242