Read Equations degre 1 exercices corrigés text version

Cours et exercices de mathématiques

M. CUAZ, http://mathscyr.free.fr

EQUATIONS DU PREMIER DEGRE ­ EXERCICES CORRIGES

Une équation est une égalité mathématique utilisant des termes connus, et d'autres inconnus, désignés par des lettres (en général x ou y). Ces derniers sont appelés Inconnues Résoudre une équation, c'est trouver la (les) valeur(s) de l'inconnue pour laquelle (lesquelles) l'égalité est vraie. Ces valeurs sont appelées Solutions de l'équation METHODE GENERALE : Pour résoudre une équation, il faut la transformer en une équation équivalente, que l'on sait résoudre, et ce aux moyens d'opérations élémentaires Ce sont les équations que l'on peut transformer pour se ramener à la forme ax + b = 0 (où a 0 ), et qui ont pour b solution x = - . Pour se ramener à cette forme, on peut utiliser les règles de développement et/ou réduction d'une a expression, et de transposition d'un terme d'un membre à un autre. EQUATION RESOLUTION COMMENTAIRES 2x + 5 = 0 Le nombre 5 a été transposé de gauche à 5 2 x + 5 = 0 2 x = -5 x = - . droite à l'aide d'une soustraction 2 Le nombre 2 a été transposé de gauche à droite à l'aide d'une division

1) Equations du premier degré

3x 5 - =0 4 2

3x 5 3x 5 - =0 = ( 3x ) × 2 = 5 × 4 4 2 4 2

produits en croix

6 x = 20 x =

20 10 10 = . S= 6 3 3

Même exemple que précédemment, mais où se rajoute une technique visant à transformer une égalité de fraction en une égalité de produits. On aurait pu aussi multiplier les deux membres dès le début, par 4, afin d' « éliminer » les dénominateurs. Ainsi : 3x 5 3x 5 - = 0 4× - = 4× 0 4 2 4 2

4× 3x 4 - 4× 5 2 = 0 3 x - 10 = 0 10

3(2 x - 1) - 5(4 x + 2) = 9

3(2 x - 1) - 9 = 5(4 x + 2) 6 x - 3 - 9 = 20 x + 10 6 x - 20 x = 10 + 3 + 9 -14 x = 22 22 11 11 = - . S = - -14 7 7 2x - 5 x + 1 4x - 1 - = 6 3 2 2 ( x + 1) 3 ( 4 x - 1) 2x - 5 - = 6 6 6 2 x - 5 - 2 ( x + 1) = 3 ( 4 x - 1) x=

2 x - 2 x - 12 x = 5 + 2 - 3 -12 x = 4 x=- 4 1 1 = - . S = - 12 3 3

2

10 . S = 3 3 La variable peut se trouver d'une part et d'autre de l'équation. On regroupe dans le membre de gauche ce qui la concerne, tandis que le reste est transposé à droite

3 x = 10 x =

2x - 5 x + 1 4x - 1 - = 6 3 2

Attention ! - ( x + 1) x +1 - est synonyme de donc de 3 3 -x -1 3 Une autre solution est de séparer la fraction x +1 x 1 x 1 - = - + = - - 3 3 3 3 3

( x - 3)( x + 2) = x 2 - 4 x - 2

( x - 3)( x + 2) = x 2 - 4 x - 2 x + 2 x - 3x - 6 = x - 4 x - 2

2

x 2 - x 2 + 2 x - 3 x + 4 x = -2 + 6 4 4 3x = 4 x = . S = 3 3

Page 1/1

Cette équation est une « fausse » équation du second degré puisque les termes en carré s'éliminent

Information

Equations degre 1 exercices corrigés

1 pages

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

538788