Read 82_11-061.pdf text version

REFF,P,EhTG.T COW

Biological Report 82 (11.61) August 1986

Do Not Remove from the Library U. S. Fish and Wildlife Service - -National Wetlands Kesearcn c 700 Cajun Dome Boulevard ~afa~ette, Louisiana 70506

TR EL-82-4

Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (South Florida)

SPINY LOBSTER

Fish and Wildlife Service U.S. Department of the Interior

Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers

B i o l o g i c a l Report 82(11.61) TR EL-82-4 August 1986

Species P r o f il e s : L i f e H i s t o r i e s and Environmental Requirements o f Coastal Fishes and I n v e r t e b r a t e s (South F l o r i d a )

SPINY LOBSTER

James M. Marx and W i l l i a m F. Herrnkind Department o f B i o l o g i c a l Science F l o r i d a State University T a l l ahassee, FL 32306

Project Officer John Parsons N a t i o n a l Wetlands Research Center U. S. F i s h and W i l d l i f e Service 1010 Gause Boulevard S l i d e l l , LA 70458 Performed f o r Coastal Ecology Group Waterways Experiment S t a t i o n U. S. Army Corps o f Engineers Vicksburg, M 39180 S and N a t i o n a l Wetlands Research Center Research and Development F i s h and W i l d l i f e Service U. S. Department o f t h e I n t e r i o r Washi ngton, D 20240 C

This s e r i e s should be referenced as f o l l o w s : 1i f e h i s t o r i e s U. S. F i s h and W i l d l i f e Service. 1983-19-. Species p r o f i l e s : and environmental requirements o f c o a s t a l f i s h e s and i n v e r t e b r a t e s . U. S. F i s h W i l d l . Serv. B i o l . Rep. 82(11). U.S. Army Corps o f Engineers, T EL-82-4. R T h i s p r o f i l e should be c i t e d as f o l l o w s : Marx, J.M., and W.F. Herrnkind. 1986. Species p r o f i l e s : l i f e h i s t o r i e s and environmental requirements o f c o a s t a l f i s h e s and i n v e r t e b r a t e s (south U.S. Florida)--spiny lobster. U.S. F i s h W i l d l . Serv. B i o l . Rep. 82(11.61). Army Corps o f Engineers, TR EL-82-4. 2 1 pp.

PREFACE T h i s species p r o f i l e i s one of a s e r i e s on c o a s t a l a q u a t i c organisms, p r i n c i p a l l y f i s h , o f s p o r t , commercial, o r e c o l o g i c a l importance. The p r o f i l e s are designed t o p r o v i d e c o a s t a l managers, engineers, and b i o l o g i s t s w i t h a b r i e f comprehensive sketch o f t h e b i o l o g i c a l c h a r a c t e r i s t i c s and envi ronmental requirements o f t h e species and t o describe how p o p u l a t i o n s o f t h e species may be expected t o r e a c t t o environmental changes caused by c o a s t a l development. Each p r o f i l e has s e c t i o n s on taxonomy, 1if e h i s t o r y , e c o l o g i c a l r o l e , environmental requirements, and economic importance, i f a p p l i c a b l e . A three-ring binder i s used f o r t h i s s e r i e s so t h a t new p r o f i l e s can be added as t h e y a r e prepared. T h i s p r o j e c t i s j o i n t l y planned and financed by t h e U. S. Army Corps o f Engineers and t h e U.S. F i s h and W i l d l i f e Service. Suggestions o r questions r e g a r d i n g t h i s r e p o r t should be d i r e c t e d t o the f o l l owing addresses. Information Transfer S p e c i a l i s t N a t i o n a l Wetlands Research Center U.S. F i s h and W i l d l i f e S e r v i c e NASA-Sl i d e l 1 Computer Complex 1010 Gause Boulevard S l id e l l , LA 70458 one of

U. S. Army Engineer Waterways Experiment S t a t i o n A t t e n t i o n : WESER-C Post O f f i c e Box 631 Vicksburg, MS 39180

CONVERSION TABLE

M e t r i c t o U.S Mu1 t i p l y m i l 1 i m e t e r s (mn) c e n t i m e t e r s ( an) meters (m) k i 1 ometers ( km) square meters (m ) square k i 1 m e t e r s ( km2) hectares (ha) 1 it e r s ( 1 ) c u b i c ineters (m3) c u b i c meters m i l 1 igrams (mg ) grams ( g ) kilograms (kg) m e t r i c tons ( t ) m e t r i c tons k i 1 ocal o r i es ( kcal ) C e l s i u s deyrees U.S. inches inches feet ( f t ) fathoms miles (mi) nautical miles ( m i ) square f e e t ( f t 2 ) acres 2 square m i l e s (mi g a l 1 ons ( gal ) cubic f e e t ( f t 3 ) acre-feet ounces ( 0 2 ) pounds ( l b ) short tons (ton) B r i t i s h thermal u n i t s ( B t u ) F a h r e n h e i t degrees 28.35 0.4536 0.9072 0.2520 0.5556(OF 1.8("C)

2

. Customary

To O b t a i n inches inches feet miles

&

10.76 0.3861 2.471

square f e e t square i n i l es acres gal 1 ons cubic f e e t acre- f e e t ounces ounces pounds pounds s h o r t tons B r i t i s h themal units

+ 32

Fahrenhei t degrees

Customary t o M e t r i c 25.40 2.54 0.3048 1.829 1.609 1.852 m i l 1i m e t e r s centimeters ineters meters kilometers k i 1ometers square meters hectares square k i l o m e t e r s 1 it e r s c u b i c meters c u b i c meters grains k i 1 og rams m e t r i c tons k i 1 ocal o r i e s

- 32)

C e l s i u s degrees

CONTENTS

Page

PREFACE ....................................................................iii CONVERSION TABLE ...........................................................i V ACKNOWLEDGMENTS ............................................................ i v

............................................... 1 REASON F R INCLUSION I N SERIES ............................................. 3 O LIFE HISTORY.............................................................. 3 Spawning Habits ..........................................................3 Larvae ................................................................... 5 Postlarvae and E a r l y Juveniles ......................................... 6 Late Juveniles and Adults ................................................ 7 G O T CHARACTERISTICS..................................................... 8 R WH COMMERCIAL AND SPORT FISHERY ...............................................10 Population Size Composition and Reproductive P o t e n t i a l ................... 10 Fishery-Induced Juvenile Mortality/Growth Reduction......................12 ECOLOGICAL ROLE ...........................................................12 ................................................. 13 ENVIRONMENTAL REQUIREMENTS H a b i t a t ..................................................................13 Temperature ..............................................................14 S a l i n i t y ................................................................ 15 Hydrodynamics ............................................................ 15 Oceanic C i r c u l a t i o n ......................................................16 LITERATURE CITED ........................................................... 17

MORPHOLOGY/IDENTIFICATION A I D S ............................................. 1

NONMENCLATURE/TAXONOMY/RANGE

ACKNOWLEDGMENTS For t h e i r h e l p f u l r e v i e w s and suggestions, we thank Gary Davis, N a t i o n a l Park Service, Ventura, C a l i f o r n i a , and W i l l iam Lyons, F l o r i d a Department o f N a t u r a l Resources, St. Petersburg, F l o r i d a .

.

.....Carapace

F i g u r e 1.

Dorsal view o f an a d u l t s p i n y l o b s t e r , P a n u l i r u s argus.

SPINY LOBSTER i n t h e G u l f o f Guinea, (Marchal 1968). West A f r i c a

P a n u l i r u s argus S c i e n t i f i c name. (Latreille) Preferred common name. .Spiny l o b s t e r , crawfish (Figure 1 ) Other common names. .Crayfish, F l o r i d a spiny lobster, Western At1 a n t i c spiny lobster, Caribbean spiny l o b s t e r , rock l o b s t e r , "bug" Class. Order. Family

...

MORPHOLOGY/IDENTIFICATION AIDS

General : The subcyl i n d r i c a l carapace i s studded w i t h forwardprojecting spines, and prominent r o s t r a 1 horns extend over s t a l ked eyes. Long, whip-1 i k e antennae are tapered a n t e r i o r l y and covered w i t h small spines. The slender, elongate w a l k i n g l e g s (pereopods) bear setose dactyls. The t a i l i s smooth except where notched along t h e l a t e r a l edges, and t h e t r a n s v e r s e groove on each t a i l segment i s i n t e r r u p t e d a t t h e m i d l i n e . The t a i l f a n i s composed o f a c e n t r a l t e l s o n bordered by a p a i r o f biramous uropods.

. . . . . . . . . . . Crustacea . . . . . . . . . . . .Decapoda . . . . . . . . . . Pal i n u r i d a e

Geographic range: The s p i n y l o b s t e r inhabits t h e c o a s t a l waters and shallow C o n t i n e n t a l S h e l f waters from North C a r o l i n a south t o B r a z i l , i n c l u d i n g Bermuda and t h e G u l f o f Mexico ( W i l l i a m s 1965) ( F i g u r e 2). A few specimens have been c o l l e c t e d

ATLANTIC OCEAN

ST. PETE RSBU

PALM BEACH

OKEECHOBEE

CAPE ROMANO

43

b

\ \ \ \

\ \ \

\ \

I

\

\

MILES

I I Offshore range llrnits

Aroa of high concentration

0

. I I

50 0 50 100

100

KILOMETERS

A

Figure 2. Distribution of the spiny lobster, Panulirus . argus, on the south . Florida coast.

Color: I n young j u v e n i l e s ( 7 t o 20 mm carapace l e n g t h ; a l l l e n g t h s of l o b s t e r s i n t h i s p r o f i l e are carapace l e n g t h s unless o t h e r w i s e s t a t e d ) , t h e antennae and pereopods are banded w i t h d i s t i n c t w h i t e s t r i p e s ; a broad w h i t e stripe extends along t h e dorsal mid1 i n e o f t h e carapace and abdomen. The general body c o l o r s are shades o f brown, black, and p u r p l e . A d u l t c o l o r v a r i e s from l i g h t gray o r t a n w i t h green and brown shades t o deeper brown w i t h r e d and b l a c k shades. The second and s i x t h t a i l segments have l a r g e white or yellowish o c e l l i ; small o c e l l i are d o r s o l a t e r a l on o t h e r t a i l segments. The l e g s are s t r i p e d l o n g i t u d i n a l l y w i t h d u l l blue, and t h e pleopods are b r i g h t orange and b l a c k . Sexual dimorphism: Females a r e d i s t i n g u i s h e d by t h e small c h e l a on t h e d a c t y l s o f t h e f i f t h pereopods; t h e a d u l t male i s c h a r a c t e r i z e d b y an elongate second p a i r o f l e g s b e a r i n g extended, curved d a c t y l s . The endopod i t e of female pleopods i s w e l l developed, h o o k l i ke, and h e a v i l y setose. I n males, t h e r a i s e d g e n i t a l openings l i e a t t h e base o f t h e f i f t h p a i r o f legs; i n females t h e y l i e a t t h e base o f t h e t h i r d p a i r o f legs. The female sternum i s s t r i a t e d and narrower a t i t s p o s t e r i o r margin than i n t h e male.

structuring marine benthic communities. Throughout t h e i r l i v e s , l o b s t e r s l i v e among d i v e r s e h a b i t a t s and e x h i b i t b e h a v i o r a l and p h y s i o l o g i c a l c h a r a c t e r i s t i c s t h a t make them e x c e l l e n t t e s t organisms f o r b a s i c research. LIFE HISTORY The l i f e h i s t o r y o f t h e s p i n y l o b s t e r c o n s i s t s o f f i v e major phases, having t h e f o l l o w i n g d i s t i n c t i v e beha( 1 ) oceanic v i o r s and h a b i t a t use: 1arvae, planktonic phyllosome ( 2 ) swimming postlarval pueruli (singular = puerulus), (3) e a r l y b e n t h i c "banded" j u v e n i l e s , (4) l a t e r j u v e n i l e s (20-65 mm carapace length, CL), and (5) a d u l t s . A broad range o f marine h a b i t a t s a r e used d u r i n g t h e i r l i f e c y c l e ( F i g u r e 3). Spawning H a b i t s Most s p i n y l o b s t e r i n F l o r i d a waters reproduce d u r i n g 1a t e s p r i n g and e a r l y sumner. Crawford and De Smidt (1922) r e p o r t e d peak spawning i n A p r i l and May; Dawson and I d y l l (1951) observed a peak i n A p r i l (29% o f f e males sampled bore eggs); and Lyons e t a1. (1981) noted h i g h l e v e l s i n May (32.8%) and June (30.3%). Davis (1975) r e p o r t e d an A p r i l peak (55%) f o r an u n f i s h e d p o p u l a t i o n o f l a r g e l o b s t e r s a t Dry Tortugas. Yearly v a r i a t i o n s i n peak spawning t i m e depend l a r g e l y on water temperature. Crawford (1921) reported optimal spawning a t 24O C, whereas Lyons e t (1981) observed t h a t spawning al. began a t 24O C i n deep r e e f areas (30 m). I n F l o r i d a , t h e r e i s no d i r e c t evidence t h a t l o b s t e r s spawn more than once a year, b u t some r e p e a t spawning by some i n d i v i d u a l s i s suspected i n Bermuda waters (Creaser 1950; S u t c l i f f e 1952). The s p i n y l o b s t e r spawns i n o f f s h o r e waters along t h e deeper r e e f f r i n g e s (Kanciruk and Herrnkind 1976; Warner e t a l . 1977; Lyons e t a l .

P. -

The sympatr i c Related species : l a e v i c a u d a has no d o r s a l grooves on t h e t a i l segments and bears small w h i t e spots along t h e l a t e r a l margin o f t h e t a i l ; P. g u t t a t u s has a unintFrrupted transverse single, groove on t h e second through t h e f i f t h t a i l segments and has many w h i t e spots over t h e body.

REASON FOR INCLUSION I N THE SERIES P a n u l i r u s argus supports major commercial f i s h e r i e s i n south F l o r i d a , the Bahamas, Cuba, Brazil, and throughout t h e Caribbean. Spiny l o b s t e r s are mid- t o h i g h - l e v e l predat o r s and p r o b a b l y a r e i m p o r t a n t i n

F i g u r e 3. The s p a t i a l aspects o f t h e l i f e c y c l e o f t h e s p i n y l o b s t e r P a n u l i r u s argus. The p o s t l a r v a l p u e r u l i move inshore, s e t t l i n g i n s u b t i d a l algae. J u v e n i l e s d u r i n g t h e f i r s t 2 years of b e n t h i c l i f e remain i n lagoons and shallow seagrass beds and show b o t h nomadic and r e s i d e n t i a l phases i n apparent accord w i t h food and s h e l t e r . The subadults g r a d u a l l y emigrate from t h e n u r s e r y and d i s p e r s e about t h e e x t e n s i v e shallow (3-10 m depth) banks c h a r a c t e r i s t i c o f t h e i r range. A f t e r breeding on t h e reefs, t h e females move t o waters b o r d e r i n g oceanic currents t o release larvae. A d u l t s e x h i b i t seasonal c y c l e s o f residency, nomadism, r e p r o d u c t i v e m i g r a t i o n , and i n s h o r e - o f f s h o r e m i g r a t i o n (sometimes en masse). The p a t t e r n o f movement v a r i e s c o n s i d e r a b l y over t h e range o f t h e spec i es (from H e r r n k i nd 1980 r e p r i n t e d w i t h permission from Academic Press, New York).

1981). Although a d u l t males and f e males sometimes i n h a b i t bays, 1agoons, e s t u a r i e s , and shallow banks, none a r e known t o spawn there. Requirements o f o f f s h o r e spawning are h i g h s h e l t e r qua1 i t y , s u i t a b l e water c o n d i t i o n s ( s t a b l e temperature and s a l i n i t y , low surge and t u r b i d i t y ) , and adequate l a r v a l t r a n s p o r t b y oceanic c u r r e n t s (Kanciruk and Herrnkind 1976). Mating f o l l o w s a b r i e f c o u r t s h i p i n v o l v i n g s i g n a l s by b o t h male and female. During c o p u l a t i o n , t h e male holds t h e female sternum t o sternum a g a i n s t him and extrudes a spermatophoric mass. The gray t a r r y sper-

matophore adheres t o t h e female s t e r num u n t i l spawning. The sperm may remain v i a b l e f o r as l o n g as one month. Spawning i s described i n d e t a i l b y Crawford and De Smidt (1922) and S u t c l i f f e (1952). The female abdomen i s f l e x e d i n c u p l i k e f a s h i o n beneath t h e cephalothorax, and t h e t e l s o n and uropods a r e spread. Eggs ( s p h e r i c a l , 0.5 m diameter) are l i b e r a t e d e x t e r m n a l l y through t h e gonopores l o c a t e d a t t h e base o f t h e t h i r d p a i r o f w a l k i n g 1egs. F e r t i l i z a t i o n begins as a female scratches a t t h e spermatophore packet u s i n g t h e c h e l a t e d a c t y l s o f

t h e f i f t h walking legs. The b r i g h t orange, y o l k - f i l l e d eggs adhere t o h o o k l i k e pleopodal setae on t h e unders i d e o f t h e abdomen. F e c u n d i t y v a r i e s d i r e c t l y w i t h size: females 71 t o 75 m l o n g c a r r y 230,000 eggs; females m l o n g e r t h a n 100 m may c a r r y over m 700,000 eggs ( Mota-Alves and Bezerra 1968). Embryonic development l a s t s about 3 weeks (Crawford 1921). The eggs t u r n brown a few days b e f o r e h a t c h i n g . The phyllosomes emerge f r o m t h e egg membrane and d i s p e r s e i n t o t h e water column a s s i s t e d by abdominal movements o f t h e female. The r e l a t i v e (percentage) c o n t r i b u t i o n o f each s i z e c l a s s i n t h e popul a t i o n t o t h e t o t a l number o f eggs l a y e d can be e s t i m a t e d u s i n g t h e Index of Reproductive P o t e n t i a1 ( IRP; K a n c i r u k and H e r r n k i n d 19761, which states: IRP = (A x B x C)/D where t o t a l females w i t h i n a given s i z e . c l a s s / t o t a l females in the popu 1a t ion bearing B = % o f females eggs i n t h a t s i z e c l a s s C = f e ~ u n d i ~ oy females i n t f that size class D = a c o n s t a n t ( t o t a l eggs 1aid/100%) d e r i v e d to s e t t h e i n d e x o f a part i c u l a r size class at t h e percentage c o n t r i b u t i o n t o t h e t o t a l egg production. A =

e t a l . (1981) e s t i m a t e d t h a t egg p r o d u c t i o n i n t h e F l o r i d a Keys was o n l y 12% o f t h a t t o be expected f r o m an unfished p o p u l a t i o n o f s i m i l a r s i z e . I n t e n s e f i s h i n g may have caused a decline i n t h e minimum s i z e o f spawning females i n F l o r i d a waters. The smallest egg-bearing females r e p o r t e d b y Crawford and De Smidt i n 1922 were 76 mm, b u t i n r e c e n t surveys egg-bearing females were as small as 71 m (Warner e t a l . 1977) and 65 m m (Lyons e t a l . 1981). I n c o n t r a s t , t h e s m a l l e s t egg b e a r e r observed f r o m an u n f ished p o p u l a t i o n a t Dry Tortugas was 78 m ( D a v i s 1975). m Suggested causes f o r t h i s apparent d e c l i n e i n s i z e a r e g e n e t i c s e l e c t i o n (Warner e t a l . 1977), m o d i f i e d sexual behavior when l a r g e females a r e r a r e (Lyons e t a l . 19811, and reduced growth caused by h i g h i n j u r y r a t e s (Davis and D o d r i l l 1980). The minimum l e g a l s i z e ( e s t a b l i s h e d i n 1965) may n o t adeq u a t e l y p r o t e c t spawning stock i n F l o r i d a (see a r e l a t e d d i s c u s s i o n i n t h e s e c t i o n on t h e Commercial and Sport Fishery). Larvae Eggs hatch as transparent, phyllosome ( l e a f - b o d i e d ) l a r v a e . They a r e m o r p h o l o g i c a l l y w e l l equipped f o r p l a n k t o n i c l i f e , b e a r i n g long, h i g h l y setose appendages e x t e n d i n g f r o m a f 1attened, b i lobed dorsoventral l y cephalothorax. Phyllosomes swim i n a h o r i z o n t a l p o s i t i o n by means o f t h e exopodal a c t i o n o f t h e biramous l e g s (Provenzano 1968). They undergo a die1 pattern o f vertical distribution, ascending t o s u r f a c e waters a t n i g h t and descending d u r i n g t h e day (Sims and I n g l e 1967). Distribution i s o t h e r w i s e r e g u l a t e d b y ocean c u r r e n t s and o t h e r f a c t o r s t h a t i n f l u e n c e water c i r c u l a t i o n p a t t e r n s ( A u s t i n 1972). Phyllosomes develop t h r o u g h about 1 stages, i n c r e a s i n g i n s i z e from 1 2 nun ( t o t a l l e n g t h ) a t h a t c h i n g t o n e a r l y 34 m b e f o r e metamorphosis (Lewis 1951). D u r a t i o n o f t h e p h y l l o -

-

A p p l y i n g t h e IRP t o t h e l o b s t e r popul a t i o n o f t h e upper F l o r i d a Keys, Lyons e t a l . (1981) e s t i m a t e d t h a t t h e 76-85 m CL s i z e c l a s s c o n t r i b u t e d m 48% o f t o t a l egg p r o d u c t i o n . Females l o n g e r t h a n 85 m made up o n l y 20% o f m a1 1 females, b u t c o n t r i b u t e d about 41% o f eggs. Smaller s i z e c l a s s e s ( < 76 m CL) c o n s t i t u t e d 25% o f a l l females, m of b u t c o n t r i b u t e d o n l y 11% t h e eggs. Compared t o t h e i n d e x values f o r t h e u n f ished p o p u l a t i o n a t Dry Tortugas ( d a t a p r o v i d e d by Davis 19751, Lyons

some stage i s about 6 t o 12 months (Lewis 1951; Lyons e t a l . 1981). The u n c e r t a i n t y o f t h e d u r a t i o n o f t h e phyllosome stage renders t h e question o f l a r v a l o r i g i n s problematic. Major f a c t o r s causing uncert a i n t y are v a r i a t i o n s i n growth r a t e s , delays in metamorphosis, the widespread abundance o f 1arvae, and t h e i n h e r e n t c o m p l e x i t i e s of oceanic c i r c u l a t i o n throughout t h e western A t l a n t i c r e g i o n (Lewis 1951; Sims and I n g l e 1967; A u s t i n 1972; Richards and P o t t h o f f 1981). The l a r v a l source f o r F l o r i d a is.unknown, b u t two d i f f e r e n t ( 1 ) l a r v a e of o r i g i n s are proposed: Caribbean spawning stocks (Lewis 1951; Sims and I n g l e 1967) a r e t r a n s p o r t e d downcurrent t o F l o r i d a , and (2) l a r v a e o f l o c a l stocks a r e r e t a i n e d by i d i o syncratic current patterns o f f the coast o f F l o r i d a (Menzies and K e r r i g a n 1979). N e i t h e r proposal i s conclusive, and new research approaches a r e under study, particularly biochemical genetics (Menzies 1981; see Lyons 1981 f o r a thorough review). Post1 arvae and E a r l v J u v e n i l e s The s p i n y l o b s t e r l a r v a metamorphoses i n t o a puerulus, a b r i e f ( s e v e r a l weeks), nonfeeding, oceanic phase (Lyons 1980). The puerulus possesses a number o f d i s t i n c t i v e f e a t u r e s i n c l u d i n g adaptations f o r r a p i d , e f f i c i e n t swimming (e.g., a smooth, 1i g h t w e i g h t t r a n s p a r e n t body 1acking c a l c i f i c a t i o n and spines, and a d o r s o v e n t r a l l y f l a t t e n e d carapace). After metamorphosis offshore (Sweat 1968; Witham e t a l . 19681, pueruli swim shoreward by n i g h t , antennae d i r e c t e d forward, w i t h i n a few centimeters o f t h e water s u r f a c e (Lyons 1980). Propulsion i s provided by s p e c i a l i z e d abdominal pleopods. Large numbers o f p u e r u l i a r r i v e along the southeast F l o r i d a coast and southern shores o f t h e F l o r i d a Keys throughout the year, principally d u r i n g t h e new and f i r s t - q u a r t e r l u n a r

phases (Sweat 1968; Witham e t a l . 1968; L i t t l e 1977; L i t t l e and Milano 1980). The season of peak r e c r u i t ment v a r i e s c o n s i d e r a b l y from year t o year and r e g i o n a l l y , b u t maximum numbers generally a r r i v e inshore i n s p r i n g ; t h e r e i s a l e s s e r peak i n f a l l ( Lyons 1980 1. Because Florida l o b s t e r s spawn almost e x c l u s i v e l y i n l a t e spring, year-round r e c r u i t m e n t o f l a r v a e suggests t h a t a s u b s t a n t i a l number o f p u e r u l i o r i g i n a t e elsewhere. P u e r u l i s e t t l e r a p i d l y when t h e y encounter s u i t a b l e i n s h o r e substrate. They a c q u i r e reddish-brown pigment a t i o n and w i t h i n days m o l t i n t o t h e f i r s t j u v e n i l e stage. The d i s t i n c t i v e c o l o r patterns o f e a r l y benthic juven i l e s are a combination o f c r y p t i c (different shades) and d i s r u p t i v e (bands o r s t r i p e s ) f e a t u r e s t h a t make juveniles i n vegetation nearly i n v i s ible. L i t t l e i s known about f a c t o r s t h a t stimulate p o s t l arval settlement and s p e c i f i c h a b i t a t requirements o f e a r l y j u v e n i l e s . Witham e t a l . (1964) caught p o s t l arvae and young j u v e n i l e s up t o 25 mm l o n g among a l g a l - f o u l e d mangrove roots and algal clumps c o l l e c t e d from shallow seagrass beds. Marx ( 1983 ) observed p o s t 1arvae and j u v e n i l e s up t o 20 mm l o n g i n shallow (2-3 m) macroalgal assemblages dominated by s e v e r a l species o f t h e r e d a l g a Laurencia. Somewhat 1a t e r stages (31 = 2 1 m CL) i n h a b i t e d small h o l e s m and c r e v i c e s w i t h i n a shallow, a l g a l fouled rubble zone dominated by v a r i o u s r e d algae, p r i m a r i l y Laurencia (Andree 1981). Eldred e t a l . (1972) and Davis (1979) r e p o r t e d s u b s t a n t i a l catches of l o b s t e r s 11 t o 30 mm l o n g i n Biscayne Bay by b a i t shrimp trawlers. T r a w l i n g took p l a c e over sand/mud bottoms with abundant seagrasses, calcareous green algae, and Laurencia. E a r l y b e n t h i c l a r v a e and juven iles apparently concentrate in macroalgae beds along r o c k y s h o r e l i n e s and may be i n t e r s p e r s e d among l a r g e

expanses o f seagrass t h a t t y p i f y known n u r s e r y areas l i k e F l o r i d a Bay (Davis and Dodri 11 1980; Lyons e t a1 1981) and Biscayne Bay (Davis 1979).

.

E a r l y benthic lobsters tend t o l i v e a s o l i t a r y e x i s t e n c e (Andree 1981; Marx 1983). Because t h e y have easy access t o t h e i r food supply, f o r a g i n g t i m e f o r young j u v e n i l e s and exposure t o p r e d a t o r s are minimal. Young j u v e n i l e s a r e h i g h l y aggressive, using t h e antennae t o l a s h o r p r y conspecifics, suggesting that dispersed spacing p a t t e r n s may be maintained by a g o n i s t i c behavior. L a t e J u v e n i l e s and A d u l t s Most l o b s t e r s longer than 20 m m aggregate i n v a r i o u s s h e l t e r i n g s t r u c t u r e s i n p r o t e c t e d bays, i n c l u d i n g e s t u a r i e s w i t h h i g h s a l i n i t y (Olsen e t al. 1975; Davis 1979). She1t e r s i n c l u d e l a r g e sponges, c o r a l heads, mangrove r o o t s , grass-bed undercuts, s o l u t i o n holes, r o c k y outcroppings o r ledges, and even clumps o f sea u r c h i n s (Davis 1971). Most s h e l t e r s supply p a r t i a l camouflage, p h y s i c a l l y d e t e r predators, and p r o v i d e r e f u g e from physical stress. Adult c o l o r a t i o n r e p l a c e s t h e c r y p t i c p a t t e r n , and l a t e j u v e n i l e s begin t o e x h i b i t a c t i v e a n t i p r e d a t o r defense using t h e antennae as f o i l s . The ontogenetic t r a n s i t i o n from 'sol i t a r y - a s o c i a l l 1 t o "aggregatives o c i a l " i s apparently not r i g i d l y f i x e d , and probably depends i n p a r t on t h e d i s t r i b u t i o n and p h y s i c a l charact e r i s t i c s o f l o b s t e r s h e l t e r (Andree 1981; Marx 1983). Juveniles tend t o be nomadic, u s u a l l y t a k i n g s h e l t e r a f t e r foraging a t night. Where j u v e n i l e d e n s i t y i s high, t r a n s i e n t movements a r e especi a1 l y apparent i n areas o f i n t e r m i t t e n t s h e l t e r , e.g., the shallow waters o f t h e F l o r i d a Keys (Herrnkind 1980). Lobsters approaching maturity (70-80 mm) emigrate o f f s h o r e (Witham

e t a l . 1968; Olsen e t a l . 1975; Davis 1979). These e m i g r a t i o n s a r e u s u a l l y gradual and nomadic, b u t s h o r t - t e r m mass movements do occur. These movements w i d e l y d i s p e r s e t h e l o b s t e r s along t h e r e e f s t h a t p a r a l l e l t h e F l o r i d a Keys (Warner e t a l . 1977; Davis 1979; Herrnkind 1980). Sex r a t i o s inshore i n d i c a t e t h a t more females t h a n males emigrate o f f s h o r e (Olsen e t a l . 1975; Davis and D o d r i l l 1980; Lyons e t a l . 1981). O f f s h o r e l o b s t e r p o p u l a t i o n s are composed predomi n a n t l y of adults r e s i d i n g i n d i v i d u a l l y o r communally i n crevices o f rock or coral. After f o r a g i n g a t n i g h t (up t o several hundred meters) most a d u l t s r e t u r n t o t h e same o r nearby dens ( H e r r n k i n d e t a1 1975). Homing a p p a r e n t l y i n v o l v e s o r i e n t a t i o n of t h e l o b s t e r t o hydrodynamic ( c u r r e n t and wave surge), chemic a l , topographic, and g r a v i t a t i o n a l ( s l o p e ) cues ( H e r r n k i n d 1980). Adult l o b s t e r s a r e h i g h l y s e l e c t i v e o f dens, r e s i d i n g most f r e q u e n t l y i n c r e v i c e s t h a t a l l o w f u l l withdrawal o f t h e body, deny access by l a r g e predators, and c o n t a i n o t h e r l o b s t e r s (Herrnkind e t al. 1975). The preference f o r an occupied den i s g e n e r a l l y i n t e r p r e t e d being as a s o c i a l response, i.e., Both 1a t e a t t r a c t e d t o conspecif i c s . j u v e n i l e s and a d u l t s a r e gregarious.

.

The tendency f o r a d u l t l o b s t e r s t o congregate p r o b a b l y i s a r e q u i r e ment f o r adequate defense, mating, and s h e l t e r use. Lobsters may r e s i s t p r e d a t o r s by b l o c k i n g 1arge den openi n g s o r by forming a cohesive group a d j a c e n t t o l e s s f o r m i d a b l e she1 t e r s l i k e sponges and sea whips. Males i n i t i a t e mating by seeking r e c e p t i v e females o f t e n found congregated d u r i n g t h e day ( L i p c i u s e t a l . 1983). Concentrations o f s p i n y l o b s t e r s i n t h e waters o f t h e F l o r i d a Keys tend t o s h i f t i n autumn and d u r i n g t h e spring reproductive period. Some movements a r e sex dependent and sometimes cause sharp d i f f e r e n c e s i n malefemale r a t i o s from p l a c e t o p l a c e

(Herrnkind 1980). Females move t o deeper r e e f s i n t h e spring, presumably t o mate and shed l a r v a e (Crawford and De Smidt 1922; Davis 1977; Lyons e t a1 1981). A t Dry Tortugas, females return to shallow water after r e l e a s i n g t h e i r larvae. Normal sex r a t i o s (about 1 : l ) are r e s t o r e d by fall (Davis 1977). Both sexes emigrate o f f s h o r e i n t h e f a l l as water temperatures decl i n e and f a 1 1 storms a r r i v e (Davis 1977; Kanciruk and Herrnkind 1978; Herrnkind 1982). Sometimes o f f s h o r e movements are spect a c u l a r mass m i g r a t i o n s o f l o b s t e r s forming s i n g l e - f i l e columns o r queues (Herrnkind and Kanciruk 1978; Kanciruk and Herrnkind 1978; Herrnkind 1980).

.

U.S. V i r g i n I s l a n d s (Olsen and K o b l i c k 1975). V a r i a t i o n i s caused p a r t l y by d i f f e r e n c e s i n methodology used t o e s t i m a t e growth, b u t most d i f f e r e n c e s a r e caused b y changes i n environmental c o n d i t i o n s . Local v a r i a b i l i t y i n food abundance, p o p u l a t i o n d e n s i t y , predat o r y a t t a c k s ( i n d u c i n g i n j u r i e s ) , and water temperature g r e a t l y a f f e c t s growth r a t e s o f s p i n y l o b s t e r s (Newman and P o l l o c k 1974; C h i t t l e b o r o u g h 1976; Davis 1979; Aiken 1980; Waugh 1981). Growth sometimes v a r i e s w i t h i n a r e 1a t i v e l y small area; consequently, t h e r e l a t i o n s among s i z e , sex, and growth are unpredictable. Furthermore, data from recaptured tagged l o b s t e r s are d i f f i c u l t t o o b t a i n f o r a l l s i z e ranges, p r o h i b it i ng accurate a n a l y s i s o f mol t f r e quency and increment per m o l t and t h e use of von B e r t a l a n f f y growth models (Davis 1979; Waugh 1981). Growth d a t a f o r F l o r i d a l o b s t e r s are u s u a l l y shown as mean s i z e increments per u n i t of t i m e f o r p a r t i c u l a r s i z e groups. The monthly growth r a t e o f s p i n y l o b s t e r ( s t a r t i n g w i t h p u e r u l i 6 mm CL) r e a r e d f o r 7 months was 3.8 t o 4.2 mn/mo, given an average s i z e of 34 m m ( 6 mn CL a t metamorphosis p l u s 7 X 4 mn o r 28 mn) (Witham e t a l . 1968); an average growth r a t e o f 5 mm/mo f o r t h e f i r s t 9-10 months a f t e r s e t t l e m e n t was estimated f r o m l e n g t h (CL) frequency 1972) from data (Eldred e t al. l o b s t e r s sampled i n Biscayne Bay. The p a t t e r n of 1ength frequency, however, i s r e l i a b l e o n l y up t o l e n g t h s o f 25 mn, a f t e r which i n t e r p r e t a t i o n s o f f i e l d d a t a are s e r i o u s l y biased b y t h e l a c k o f d i s t i n c t s e t t l i n g classes. Young j u v e n i l e s c o n f i n e d i n small aquaria w i t h a l i m i t e d d i v e r s i t y o f food grew s u b s t a n t i a l l y slower ( < 2 mn/mo) than most n a t u r a l p o p u l a t i o n s (Lewis e t a l . 1952; Sweat 1968). Growth rates were estimated during a 2-year tag-and-recapture study i n Biscayne Bay and F l o r i d a Bay, b o t h of which a r e major n u r s e r y areas (Davis and D o d r i l l 1980; Davis 1981).

GROWTH CHARACTERISTICS The growth o f t h e s p i n y l o b s t e r i s largely correlated with the f r e quency of m o l t i n g and increment growth (Aiken 1980). while molting Generally, t h e frequency o f t h e m o l t s and increment growth d e c l i n e w i t h age, as i s borne o u t by t h e von B e r t a l a n f f y growth model (a decaying exponential curve), which s t a t e s :

where

L t = carapace l e n g t h a t t i m e t L = asymptotic carapace l e n g t h e = base o f n a t u r a l l o g a r i t h m s t o = t i m e a t which carapace l e n g t h was 0, growth coefficient k = the Lt (rate at which approaches L 1.

Estimates o f t h e growth coeff i c i e n t s ( k ) i n d i f f e r e n t waters sometimes v a r y considerably. C o e f f i c i e n t s were 0.11 f o r t h e lower F l o r i d a Keys (Yang and Obert 1978), 0.21 for F l o r i d a and Be1 ize combined (Munro 1974), 0.31-0.36 f o r south F l o r i d a (see G u l f o f Mexico and South A t l a n t i c F i s h e r y Management Counci 1s CGMSAFMCI 1982), 0.03-0.24 f o r t h e Bahamas (Waugh 19811, and 0.43 f o r St. John,

I n Biscayne Bay, t h e mean growth r a t e m o f l o b s t e r s 40-85 m l o n g was 1.8 mm/mo. The p h y s i c a l c o n d i t i o n o f individuals significantly affected growth: u n i n j u r e d l o b s t e r s grew 2.2 mn/mo, b u t those m i s s i n g l e g s and antennae grew o n l y 1.3 mm/mo, a 41% reduction. I n F l o r i d a Bay, mean growth r a t e o f l o b s t e r s o f about t h e same s i z e was 3.3 mm/mo. Injured l o b s t e r s grew n e a r l y as f a s t . Davis (1980) attributed and Dodri 11 increased growth and t h e l a c k o f damaging e f f e c t s f r o m i n j u r y t o o p t i mal growing c o n d i t i o n s and low f i s h i n g e f f o r t i n F l o r i d a Bay. I n waters near m Key West, tagged l o b s t e r s 49 t o 83 m l o n g grew an average o f 3.1 mm/mo ( L i t t l e 1972). The p o s t s e t t l e m e n t t i m e r e q u i r e d f o r j u v e n i l e s t o reach minimum l e g a l s i z e i s i m p o r t a n t t o f i s h e r y management. Estimates o f p o s t s e t t l e m e n t times, and o f carapace l e n g t h s a f t e r 2 years o f b e n t h i c l i f e , are shown i n Table 1. The f i r s t 7 months o f each growth e s t i m a t e a f t e r t h e b e g i n n i n g o f t h e p u e r u l u s stage ( 6 mn CL) are based on a mean growth r a t e o f 4.0 mm/mo; thus the lobsters are 34 m m

l o n g 7 months a f t e r s e t t l i n g (Witham e t al. 1968). The remaining 17 months o f each e s t i m a t e a r e based on growth r a t e s o f l o b s t e r s over 40 m m l o n g i n v a r i o u s areas. For example, t h e e s t i m a t e d carapace l e n g t h o f i n j u r e d F l o r i d a Bay l o b s t e r s a f t e r 2 y e a r s was 34 m + (17 mo x 3.2 mm/mo) m = 88 mm. The estimated number o f months t o reach l e g a l s i z e (76 mm) i s o b t a i n e d b y d i v i d i n g 42 m (76 m m m 34 m = 42 m , t h e growth a f t e r 7 mo) by m m t h e observed growth r a t e a f t e r 7 months and adding 7 months. From t h e above d a t a i t was c a l c u l a t e d t h a t t h e l o b s t e r s reach l e g a l l e n g t h i n about 20 months (42 mm/3.2 mm/mo + 7 mo).

-

An i n t e r a c t i o n between sex and growth o f s p i n y l o b s t e r s i s known (Chi t t l e b o r o u g h 1976; Aiken 1980). L o b s t e r s o f t h e two sexes show near equal growth i n t h e n u r s e r i e s o f F l o r i d a Bay and Biscayne Bay (Davis However, a d u l t and D o d r i l l 1980). female l o b s t e r s grow slower than males. T h i s growth d i f f e r e n t i a l has been r e p o r t e d f o r t h e lower F l o r i d a Keys ( L i t t l e 19721, Bahamas (Waugh 19811, and U.S. V i r g i n I s l a n d s (Olsen and Kobl i c k 1975).

. Table 1 Estimated timea f o r i n j u r e d and u n i n j u r e d l o b s t e r s a t d i f f e r e n t locat i o n s t o reach l e g a l s i z e (76 mm carapace l e n g t h [CL]).

Location and c o n d i t i o n F l o r i d a Bayb Injured Uninjured Biscayne Bayb Injured Uninjured Key WestC Combined a b c Numberof observations 644 3.2 3.4 1688 1.3 2.2 44 3.1 56 71 87 88 92 Meangrowth C a r a p a c e l e n g t h (mm/month) (mm) a f t e r 2 years Numberofmonthsto reach l e g a l l e n g t h a

A f t e r p u e r u l u s s e t t l e m e n t ; add 9 months t o o b t a i n approximate age. Based on Davis and D o d r i l l (1980). Based on L i t t l e (1972). 9

Length-weight r e 1a t i o n s h i p s d i f f e r s i g n i f i c a n t l y by sex. Lyons e t a l . (1981) derived the f o l l o w i n g equations: 2.69934 W = 0.00315 'CL Ma1es Females where

> m - 76 m CL o r have t a i l l e n g t h s o f a t

l e a s t 140 mm. Egg-bearing must be r e t u r n e d t o t h e sea.

females

W = 0.00361 CL

2.68379

W = wet weight i n grams, CL = carapace l e n g t h i n mm.

equation for combined

The d e r i v e d sexes,

W = 0,00422 CL

2.64091

9

g i v e s a reasonable approximation.

COMMERCIAL AND SPORT FISHERY The F l o r i d a s p i n y l o b s t e r i s a v a l u a b l e s p o r t and commercial species. The s p i n y l o b s t e r supports F l o r i d a ' s second most v a l u a b l e s h e l l f i s h e r y . I n 1980 t h e commercial c a t c h was 6.7 m i l l i o n l b , w i t h a dockside value exceeding $14 m i l l i o n ( N a t i o n a l Marine Fisheries Service, Statistical Reporting Service, Miami, F l o r i d a ) . Sport and commercial f i s h i n g f o r t h i s species i s concentrated i n t h e F l o r i d a Keys (Monroe County). Some s p i n y l o b s t e r s a r e taken by sportsmen i n most c o a s t a l waters o f F l o r i d a . Fishermen using t o p - e n t r y woods l a t t r a p s account f o r 99% o f t h e t o t a l commercial catch; commercial d i v e r s and shrimpers, who o c c a s i o n a l l y capture l o b s t e r s i n t r a w l s (GMSAFMC 1982), account f o r t h e remainder. Sport d i v e r s use s k i n - o r scuba-diving gear, gloves, and small hand-held n e t s t o c a t c h l o b s t e r s . The s p o r t c a t c h i s about 10% o f t h e commercial catch and provides a seasonal boost t o t h e t o u r i sm-dependent economy of the Florida Keys (GMSAFMC 1982). Regulations i n 1984 p r o h i b i t e d l o b s t e r f i s h i n g from ,1 A p r i l through 25 J u l y and r e q u i r e d t h a t a l l l o b s t e r s must be

Commercial f i s h i n g has i n t e n s i f i e d g r e a t l y s i n c e t h e 1960's. New boats have entered t h e f i s h e r y , t h e number of traps fished per boat has increased, and Miami -based boats began f i s h i n g l o c a l l y a f t e r Bahamian waters were c l o s e d t o f o r e i g n f i s h i n g i n 1975. T o t a l l a n d i n g s have n o t r i s e n d e s p i t e increased f i s h i n g i n t e n s i t y . The consequence has been a dramatic d e c l i n e i n c a t c h per t r a p , e.g., c a t c h p e r u n i t e f f o r t (CPUE; Table 2). Landings have remained r e l a t i v e l y s t a b l e s i n c e 1970, averaging 4.8 m i l l i o n lb/year. Some f i s h e r i e s biologists believe that the stable landings i n d i c a t e stable recruitment and abundance o f h a r v e s t a b l e stocks. Lowered CPUE i s blamed on i n d u s t r i a1 overcapi t a l i z a t i o n (Austin 1981; GMSAFMC 1982). P o s s i b l y t h r e e times t h e number of t r a p s are f i s h e d as a r e needed t o h a r v e s t t h e a v a i l a b l e y i e l d (GMSAFMC 19821, so t o t a l m o r t a l it y estimates and e x p l o i t a t i o n r a t i o s increased from 1975-76 t o 1978-79 (Table 3). I f these increases t r u l y r e f l e c t the efficiency o f exploitation ( r e s u l t i n g from increased e f f o r t ) , t o t a l l a n d i n g s should have increased g i v e n a c o n s t a n t h a r v e s t a b l e stock. I n s h o r t , s t a b l e l a n d i n g s may be a m i s l e a d i n g consequence o f increased f i s h i n g i n t e n s i t y on d e c l i n i n g stocks. P o p u l a t i o n S i z e Composition and Reproductive P o t e n t i a l Lyons e t a1 (1981) noted a 12-mm decrease (90 m t o 78 m CL) i n t h e m m modal l e n g t h o f F l o r i d a Keys l o b s t e r s s i n c e 1945-49 (Dawson and I d y l l 1951). The modal carapace l e n g t h o f 78 m i s m about 30% s m a l l e r than t h a t o f t h e u n f ished p o p u l a t i o n a t Dry Tortugas (100 m CL; Davis 1977). The d e c l i n e m i n t h e s i z e o f t h e mature female has caused a marked r e d u c t i o n i n reproductive potential (egg production). Lyons e t a l . (1981) estimated t h e F l o r i d a Keys p o p u l a t i o n spawns o n l y

.

Table 2. The l a n d i n g s ( m i l l i o n s o f pounds) and ex-vessel values ( m i l l i o n s o f U. S. do1 l a r s ) i n domestic waters and t h e landings, number o f t r a p s f i s h e d , and c a t c h p e r t r a p f o r Monroe County ( F l o r i d a Keys), 1970-79 (adapted from GMSAFMC 1982). F l o r i d a landings Year Total a (1b) Total Monroe County landings Domestic (1b) Total (1b) Number o f traps Catch ( I b ) per trap

($1

a b

F l o r i d a l a n d i n g s i n c l u d e some l o b s t e r s caught i n f o r e i g n waters. Domestic landings i n c l u d e waters of t h e e n t i r e S t a t e of F l o r i d a .

Size and m o r t a l i t y estimates f o r t h e u n f i s h e d p o p u l a t i o n o f s p i n y Table 3. l o b s t e r s a t Dry Tortugas and the, f i s h e d p o p u l a t i o n s o f t h e lower F l o r i d a Keys and t h e m i d d l e t o upper F l o r i d a Keys (adapted from GMSAFMC 1982). Locat ion Dry Tortugas Lower F l o r i d a Keys ( 1975-76) Middle t o upper F l o r i d a Keys (1978-79) Lr 100 65 Lc 115 78

Z

1.00 1.72

A 63 82

F

E

Data source Davis (1977) Warner e t a l . (1977) Lyonsetal. (1981

-1.32

-0.77

73

81

2.73

94

2.33

0.85

L r = Size (m CL) a t f u l l r e c r u i t m e n t LC = Average s i z e of f u l l y r e c r u i t e d p o p u l a t i o n Z = K (L - Lc)/(Lc - L r ) = Total m o r t a l i t y c o e f f i c i e n t A = 1 - e-Z = Annual m o r t a l i t y r a t e ( % ) F = Z - M = Fishing m o r t a l i t y c o e f f i c i e n t E = F/Z = E x p l o i t a t i o n r a t i o m where L = 190 m CL, growth c o e f f i c i e n t (K) = 0.2, n a t u r a l m o r t a l i t y (M) =O

12% o f t h e number o f eggs of an u n f ished p o p u l a t i o n o f equal number because t h e f i s h e r y s e l e c t e d and e f f e c t i v e l y removed t h e 1arger, more I f t h e decrease i n fecund females. eggs spawned causes a decrease i n l a r vae and r e c r u i t m e n t i n t o t h e f i s h e r y , then spawning s t o c k s w i l l have t o be If l o c a l l y spawned b e t t e r protected. larvae are s i g n i f i c a n t contributors, suggested a c t i o n s i n c l u d e i n c r e a s i n g the minimum legal size and e s t a b l i s h i n g s a n c t u a r i e s where l a r g e , fecund females a r e p r o t e c t e d . I f l a r vae f r o m F l o r i d a support l o b s t e r f i s h e r i e s o u t s i d e o f F l o r i d a waters and v i c e versa, c o o p e r a t i v e i n t e r n a t i o n a l management agreements may be r e q u i r e d (Lyons 1981; V i l l e g a s e t a l . 1982 1. Fishery-Induced Growth Reduction Juvenile Mortality/

Laws enacted i n 1976 a l l o w fishermen i n F l o r i d a t o use s m a l l , i1 l e g a l lobsters (locally termed "shorts") as decoys in traps. Fishermen p r e f e r " s h o r t s " over convent i o n a l b a i t s such as cowhide o r f i s h heads. Studies confirm t h a t catch r a t e s increase w i t h t h e number o f " s h o r t s " used per t r a p (Lyons and Kennedy 1981). T h i s p r a c t i c e causes s u b s t a n t i a l m o r t a l i t y among j u v e n i l e stocks. Major s t r e s s e s a r e b o a t s i d e t r a n s p o r t and s t a r v a t i o n d u r i n g conf inement ( Lyons and Kennedy 1981 ). Loss t o t h e f i s h e r y may be s u b s t a n t i a l because i n t h e 1980's over 500,000 t r a p s a r e b e i n g f i s h e d , and fishermen t y p i c a l l y use t h r e e t o f i v e " s h o r t s " per t r a p (Lyons and Kennedy 1981). Attempts a r e underway t o develop a r t i f i c i a l l u r e s as a low-cost a l t e r n a t i v e (Ache and Hamilton 1982). Another approach would be t o r e q u i r e openings o f s u f f i c i e n t s i z e among t h e s l a t s (escape gaps) t o a l l o w a l l undersized l o b s t e r s t o escape (Lyons and Kennedy 19811. Injuries t o juvenile lobsters ( l o s s o f antennae and l e g s ) are commonly caused b y a t t a c k s f r o m p r e d a t o r s

and from hand1 i n g by commerci a1 fishermen and s p o r t d i v e r s . In Biscayne Bay, the frequency of i n j u r i e s increased as much as 50% d u r i n g t h e f i s h i n g season (Davis and D o d r i l l 1980). Less frequent i n j u r i e s were r e p o r t e d f o r t h e m i d d l e and upper F l o r i d a Keys (Lyons e t a l . 1981). I n j u r e d l o b s t e r s grow slower (Davis 1981; Waugh 1981) than u n i n j u r e d l o b s t e r s presumably because t h e y are l e s s e f f i c i e n t f o r a g e r s and because growth i s r e d i r e c t e d i n t o 1imb regeneration. Davis (1979) e s t i m a t e d t h a t i n j u r i e s f r o m commercial h a n d l i n g i n Biscayne Bay caused an annual l o s s o f 31,000 l o b s t e r s . Lyons e t a l . (1981) presented evidence t h a t i n j u r i e s cause h i g h m o r t a l i t y among small ( l e s s than legal size) lobsters i n the F l o r i d a Keys. The F l o r i d a S t a t e L e g i s l a t u r e e s t a b l i s h e d a l o b s t e r sanctuary i n Biscayne Bay in 1979, and the Everglades N a t i o n a l Park p o r t i o n o f F l o r i d a Bay was c l o s e d t o r e c r e a t i o n a l l o b s t e r i n g i n 1980; b o t h measures were designed t o p r o t e c t j u v e n i l e s . Maximum s u s t a i n a b l e y i e l d (MSY) f o r l o b s t e r l a n d i n g s i n Monroe County i s e s t i m a t e d t o be 5.9 m i l l i o n I b , on t h e b a s i s o f c a t c h and f i s h i n g i n t e n s i t y d a t a o b t a i n e d f r o m 1952 t o 1975 I f domestic catches (GMSAFMC 1982). (0.2 m i l l i o n I b ) , unrecorded landings, and losses due t o h a r v e s t i n g p r a c t i c e s ( e s t i m a t e d a t 5.9 m i l l i o n 1b) were included, t h e a c t u a l MSY would be nearer t o 12 m i l l i o n I b .

ECOLOGICAL ROLE The d i e t o f s p i n y l o b s t e r p h y l l o somes has not been s u f f i c i e n t l y described. Phyllosomes i n c u l t u r e e a t chaetognaths, euphausi ids, f i s h 1a r vae, medusae, and ctenophores (Provenzano 1968; Inoue 1978; P h i l l i p s and S a s t r y 1980). There a r e no i n d i c a t i o n s t h a t p u e r u l i feed a t a l l (Lyons 1980).

Lobsters are n o c t u r n a l f o r a g e r s throughout t h e b e n t h i c phase, l o c a t i n g food w i t h chemoreceptive setae l i n i n g t h e antennules and d a c t y l s o f t h e w a l k i n g legs (Ache and Macmillan 1980). They p r e y upon a wide v a r i e t y o f slow-moving and sedentary animals, including gastropod and bivalve mollusks, crustaceans, and echinoderms Powerful mandibles crush ( F i g u r e 4). o r c h i p away a t molluscan she1 1s and o t h e r types o f p r o t e c t i v e armor. V a r i a t i o n s i n t h e d i e t s among recentl y s e t t l e d juveniles i n concentrations o f algae, o l d e r . j u v e n i l e s i n i n s h o r e bays, and a d u l t s on c o r a l r e e f s probab l y r e f l e c t d i f f e r i n g p r e y avai l a b i 1it y among h a b i t a t s . Spiny 1o b s t e r s often are t h e dominant c a r n i v o r e s (as i n d i c a t e d by t o t a l biomass) i n t h e i r h a b i t a t and probably have i m p o r t a n t e c o l o g i c a l e f f e c t s on marine b e n t h i c communities ( B e r r y and Smale 1980).

S u b s t a n t i a l numbers o f l a r v a e and p o s t l a r v a e are probably eaten by p e l a g i c f i s h e s ( P h i l l i p s and S a s t r y 1980). P u e r u l i are eaten by b e n t h i c ( o r e p i b e n t h i c ) fauna as w e l l (Gracia and Lozano 1980; L i t t l e and Milano 1980). Octopods and p o r t u n i d crabs p r e y on recently s e t t l e d juveniles (Andree Experiments i n aquaria i n d i 1981 1. gray c a t e t h a t small f i s h e s (e.g., snappers) are probably t h e most import a n t p r e d a t o r s on e a r l y b e n t h i c stages ( B e r r i l l 1976). Because o f t h e i r r e l a t i v e l y l a r g e size, s p i n y exoskeleton, r a p i d t a i 1 - f l i p escape response, and defense by group formation, l a t e j u v e n i l e s and a d u l t s are w e l l p r o t e c t e d from small predators. Large predators, primarily groupers, j e w f i s h , sharks, loggerhead t u r t l e s , and octopods, p r e y on both j u v e n i l e and a d u l t l o b s t e r s (Kanciruk 1980). Stomachs of 1arge jewf i s h o f t e n cont a i n l a r g e l o b s t e r s (Crawford and De Smidt 1922). Competition among l o b s t e r species i n F l o r i d a waters appears t o be inconsequential. The o t h e r l o c a l shallowd w e l l i n g species, P a n u l i r u s laevicauda and P. guttatus, are r e l a t i v e l y s c a r c e and are r e s t r i c t e d m a i n l y t o reef habitats. ENVIRONMENTAL REQUIREMENTS Habitat Phyl losoma l a r v a e i n h a b i t t h e e p i p e l a g i c zones o f t h e open ocean, which are c h a r a c t e r i z e d by r e l a t i v e l y constant temperature and s a l i n i t y , low l e v e l s o f suspended sediments, and few pollutants. Relatively stable, natural conditions are apparently r e q u i r e d f o r optimum s u r v i v a l . Ingle and Witham (1968) noted t h a t " s p i n y l o b s t e r 1arvae are extremely d e l i c a t e , p h y s i c a l l y , and i n o r d i n a t e l y f a s t i d Larvae are ious, p h y s i o l o g i c a l l y . " p a r t i c u l a r l y s e n s i t i v e t o s i l t part i c l e s , which can, i n extreme i n s t a n ces, lodge on t h e i r setae, weigh them down, and cause death (Crawford and De

Ocomm.

algal

a bay

reef

8 O r

F i g u r e 4. Frequency o f occurrence o f food items among samples o f e a r l y benthic lobsters (inshore algal community), l a t e r j u v e n i l e s (bay), and a d u l t s ( r e e f ) (Herrnkind e t a l . 1975; Andree 1981).

Smidt 1922). Because n u t r i t i o n a l requirements change t h r o u g h o u t t h e l i f e o f t h e l a r v a e (Provenzano 1968; Phi 11 i p s and S a s t r y 1980), enhanced growth and s u r v i v a l r e q u i r e a d i v e r s e , p r o d u c t i v e oceanic p l a n k t o n community. P o s i t i v e c o r r e l a t i o n s between p l a n k t o n biomass and d e n s i t y o f l a t e - s t a g e p h y l losomes were r e p o r t e d b y R i t z (1972). Although p u e r u l i s e t t l e on i s o l a t e d oceanic banks where t h e minimum depth exceeds 1 0 m (Munro 19741, p r o ductive f i s h e r i e s apparently r e q u i r e w e l l -vegetated shallow h a b i t a t f o r j u v e n i l e development. Biscayne Bay and F l o r i d a Bay a r e c r i t i c a l n u r s e r i e s for Florida lobsters (Davis and D o d r i l l 1980). These bays a r e characterized by e x t e n s i v e meadows of benthic veqetation. primarily t u r t l e g r a s s fihalassia testudinum), shoalgrass ( H a l o d u l e w r i g h t i i ), and v a r i o u s alqae (Tabb e t a l . 1962; Hudson e t '81. 1970; E l d r e d e t a l . cormnuni t i e s 1972). Macroalgal interspersed among these areas a p p a r e n t l y are i m p o r t a n t f o r t h e e a r l i e s t b e n t h i c staqes. Red alqae, L a u r e n c i a spp., a r e abundant i n waters s u ~ ~ o r t i n q o n c e n t r a t i o n s o f vounci c j u v e n i l e s " ( E l d r e d e t a l . 1972; ~ n d r e e 1981; Marx 1983). Intricate algal branching p r o v i d e s young l o b s t e r s w i t h c r y p t i c s h e l t e r and s u p p o r t s a d i v e r s e assemblage of small gastropods, crustaceans, and o t h e r prey. J u v e n i l e s l a r g e r t h a n 20 mm CL t a k e refuge i n b o t h b i o t i c (sponges, small c o r a l heads, sea u r c h i n s ) and abiotic (ledges, solution holes) s t r u c t u r e s . The importance o f s h e l t e r a v a i l a b i l i t y on p o p u l a t i o n d i s t r i b u t i o n i s m a g n i f i e d because, unlike clawed l o b s t e r s , s p i n y l o b s t e r s can modify but not construct dens (Kanciruk 1980). S u b s t a n t i a l a d d i t i o n o f a r t i f i c i a l s h e l t e r s i n Biscayne Bay caused p o p u l a t i o n r e d i s t r i b u t i o n b u t d i d n o t i n c r e a s e t h e numbers o f l o b s t e r s i n t h e area (Davis 1979). The south F l o r i d a j u v e n i l e l o b s t e r p o p u l a t i o n may be 1 i m i t e d b y r e c r u i t -

ment, e m i g r a t i o n , food, and perhaps o t h e r f a c t o r s ( D a v i s 1979). Adults i n h a b i t coral reef c r e v i ces o r overhangs, r o c k y outcroppings, ledges, and o t h e r d i s c o n t i n u i t i e s i n hard substrate. Residential patterns o f h a b i t a t i o n a r e apparent i n 1arge, permanent d w e l l i n g s near e x t e n s i v e f e e d i n g grounds ( H e r r n k i n d e t a l . 1975). Soft-substrate shelters, l i k e grass-bed ledges, a r e occupied p r i mari l y during nomadic movements. Muddy, t u r b i d i t y - p r o n e s u b s t r a t e s a r e u s u a l l y avoided ( H e r r n k i n d e t a l . 1975; K a n c i r u k 1980). Throughout b e n t h i c l i f e s p i n y l o b s t e r s use o t h e r h a b i t a t s besides those p r o v i d i n g s h e l t e r . Lobsters c o n c e n t r a t e d d u r i n g t h e day i n l o c a l i z e d dens d i s p e r s e a t n i g h t t o f o r a g e over a d j a c e n t grass beds, sand f l a t s , and a l g a l p l a i n s ( H e r r n k i n d e t a l . 1975). I n t e r a c t i o n s between populat i o n d e n s i t y o f s p i n y l o b s t e r and food a v a i l a b i l i t y have n o t been s t u d i e d i n south Florida. Extreme v a r i a t i o n i n growth r a t e s , b o t h among i n d i v i d u a l s and b y h a b i t a t , suggests t h a t food abundance i s a c r i t i c a l f a c t o r , as demonstrated i n s p i n y l o b s t e r species elsewhere (Chi t t l e b o r o u g h 1976). Temperature Spiny l o b s t e r s g e n e r a l l y i n h a b i t waters w i t h annual minimum monthly temperatures t h a t exceed 20° C (George and Main 1967). Along t h e n o r t h e r n edge o f t h e i r d i s t r i b u t i o n i n F l o r i d a , mean m o n t h l y water temperatures r a r e l y f a l l below 160 C (Witham e t a l . 1968; Hudson e t a l . 1970; E l d r e d e t a l . 1972; L i t t l e 1977; Davis 1979). T h i s i s j u s t above r e p o r t e d minimum s u r v i v a l temperatures f o r b o t h l a r v a l and b e n t h i c l i f e staqes. Phvllosomes o f t h e s l i p p e r l o b s t e r , s c y i l a r u s americanus, which has a geographic range s i m i l a r t o t h e s p i n y l o b s t e r (Lyons 19701, show r e t a r d e d development a t water temperatures below 16O C (Robertson 1968). P o s t l a r v a l and young j u v e n i l e s p i n y l o b s t e r grow

slower and demonstrate h i g h e r mort a l i t y a t temperatures sustained below 16O C (Witham 1974). Post1 a r v a l t o l e r a n c e o f short-term, sharp temp e r a t u r e d e c l i n e s t o 13O C ( L i t t l e and M i l ano 1980) p r o t e c t s them a g a i n s t severe b u t s h o r t - l i v e d c o l d f r o n t s t h a t sometimes f r e q u e n t south F l o r i d a . A t water temperatures near 13O C, s p i n y l o b s t e r s 65-85 mm CL demonstrate reduced locomotor a c t i v i t y and an i n a b i l t y t o c a p t u r e and manipulate p r e y (Wynne 1979). D i r e c t m o r t a l it y may occur, especi a1 l y for lobsters undergoing ecdysis, d u r i n g r a p i d water temperature d e c l i n e s t o as low as 100 C (Davis 1979). Poor s u r v i v a l a t low temperatures, e s p e c i a l l y i f t h e y a r e sustained f o r several days, p r o b a b l y l i m i t s b o t h t h e l a t i t u d i n a l and depth d i s t r i b u t i o n s o f s p i n y l o b s t e r s as we1 1 as p r e v e n t i n g m i g r a t i o n across deep ocean basins l i k e t h e F l o r i d a S t r a i t s (Witham 1974; Wynne 1979). The annual water temperature range i n l o b s t e r h a b i t a t s i n south F l o r i d a i s about 18O-31° C. Sharp temperature f l u c t u a t i o n s w i t h i n t h i s range may a l t e r t h e normal r a t e o f growth o f l o b s t e r s and t h e i r t i m e o f settlement. From November t o A p r i l , t h e growth o f j u v e n i l e s i n Biscayne Bay i s reduced by as much as 59%, concurrent with water temperature d e c l i n e s o f 80 C (Davis 1979). Growth i s r a p i d b u t s u r v i v a l i s poor a t temp e r a t u r e s exceeding 32O C (Witham 1974; Aiken 1980). Growth i s o p t i m a l Newly s e t t l e d between 260 and 28O C. postlarvae are p a r t i c u l a r l y vulnerable during temperature extremes and disturbances by h u r r i c a n e s and w i n t e r storms. Fluctuations i n juvenile abundance probably a r e caused by i n t e r a c t i o n s between t h e r a t e o f s e t t l e m e n t and seasonal environmental conditions. Seasonal temperatures and temp e r a t u r e changes r e g u l a t e t h e t i m e o f spawning, 1 a r v a l development, and t h e growth o f a d u l t s and m a t u r a t i o n and growth of juveniles, which vary

markedly throughout t h e geographic range o f t h e s p i n y l o b s t e r (Kanciruk 1980). Year-round spawning occurs i n Venezuela), t r o p i c a l waters (e.g., extended spawning ( s p r i n g through f a l l ) i n t h e Bahamas, and r e s t r i c t e d spawning (March through June) i n t h e F l o r i d a Keys. These v a r i a t i o n s may be caused b y a p h y s i o l o g i c a l adjustment t o d i f f e r i n g photoperiods and temp e r a t u r e s (Quackenbush and Herrnkind 1981). Sal i n i t y P o s t l arvae do not usually t o l e r a t e s a l i n i t i e s below 19 p a r t s p e r thousand ( p p t ) (Witham e t a1 1968). Along t h e n o r t h e r n G u l f o f Mexico, adverse s y n e r g i s t i c e f f e c t s o f reduced temperature and v a r i a b l e s a l i n i t i e s probably prevent recruitment into nearshore habitats ( A u s t i n 1972). Recruitment p a t t e r n s were d i s r u p t e d i n b o t h 1966 and 1968 i n t h e St. Lucie E s t u a r y when heavy freshwater i n f l o w reduced s a l i n i t y t o below 19 p p t (Witham e t a l . 1968; L i t t l e 1977). Older j u v e n i l e s a r e a b l e t o use marg i n a l i n s h o r e h a b i t a t s because t h e y a r e h i g h l y m o b i l e and can r e t r e a t from u n s u i t a b l e p h y s i c a l c o n d i t i o n s ( H e r r n k i nd 1980).

.

Hydrodynamics Throughout b e n t h i c l i f e , l o b s t e r s a r e in f 1uenced b y hydrodynamic f o r c e s and s t i m u l i ( c u r r e n t s , wave surge, turbulence). Puerulus s e t t l e m e n t i s reduced i n areas o f s t r o n g c u r r e n t s , e.g., channels between t h e F l o r i d a Keys ( L i t t l e 1977). The p o s t s e t t l e m e n t p e r i o d may be d i s r u p t e d by disturbances that a1 t e r she1 t e r , i n t e r f e r e w i t h foraging, o r cause b o d i l y abrasion. Subadults and a d u l t s respond t o s h a r p l y increased c u r r e n t s and t u r b u l e n c e caused by t h e f i r s t autumnal storms by mass m i g r a t i o n ( H e r r n k i n d and Kanciruk 1978; Kanciruk and Herrnkind 1978; Herrnkind 1980). Mass movements are particularly striking. The l o b s t e r s form s i n g l e f i l e l i n e s , o r queues, and march i n

l o c a l l y p r e c i s e d i r e c t i o n s day and The r o l e o f n i g h t f o r up t o 1 week. s h a r p l y increased hydrodynamics i n t r i g g e r i n g m i g r a t o r y queuing has been e x p e r i m e n t a l l y demonstrated ( H e r r n k i n d Mass m i g r a t i o n b y s p i n y 1982 1. l o b s t e r may r e d i s t r i b u t e m i g r a n t s i n t o s t a b l e o v e r w i n t e r i n g h a b i t a t i n deeper r e e f areas near t h e G u l f Stream (Herrnkind and Kanciruk 1978). Current f l o w p r o v i d e s a d i r e c t i o n a l cue b o t h f o r general o r i e n t a t i o n and for l o c a t i n g food by chemosenses ( H e r r n k i n d 1980). Oceanic C i r c u l a t i o n Because t h e movement o f p h y l l o soma l a r v a e i s r e s t r i c t e d t o v e r t i c a l m i g r a t i o n (Phi 11i p s and S a s t r y 1980), ocean c i r c u l a t i o n p a t t e r n s a r e responsible for spreading larvae into

d i s t a n t waters. These p a t t e r n s cons i s t o f (1) i n i t i a l dispersal o f l a r vae f r o m spawning s i t e s ; ( 2 ) longdistance transport or r e t e n t i o n o f l a r v a e ; and ( 3 ) t r a n s p o r t o f l a r v a e t o n u r s e r y grounds. Mechanisms i n v o l v e d i n l a r v a l t r a n s p o r t t o south F l o r i d a a r e p o o r l y understood because o f complex i n t e r a c t i o n s o f major c u r r e n t s o f t h e G u l f o f Mexico and Caribbean Sea, seasonal v a r i a t i o n i n c u r r e n t p a t t e r n s o f f t h e F l o r i d a coast, and u n c e r t a i n t y o f t h e e x t e n t t o which phyllosomes r e g u l a t e t h e i r h o r i z o n t a l d i s t r i b u t i o n by v e r t i c a l m i g r a t i o n i n t o and o u t o f d i v e r g e n t water masses (Sims and I n g l e 1967; L i t t l e 1977; Menzies and K e r r i g a n 1979; Lyons 1981 1. T r a n s p o r t models proposed f o r o t h e r s p i n y l o b s t e r species cannot be s t r i c t l y applied t o spiny lobsters i n F l o r i d a ( P h i l l i p s 1981).

LITERATURE CITED 1982. Ache, B.W. , and K.A. Hamil t o n . Development o f an a r t i f i c i a l t r a p b a i t f o r spiny lobsters. Page 25 in - W.G. Lyons, ed. Proceedings o f a workshop on F l o r i d a s p i n y l o b s t e r research and management, 13-14 August 1981. F l o r i d a Department o f N a t u r a l Resources, S t . Petersburg. Ache, B. W. , and D. L. Macmill i a n . 1980. N e u r o b i o l ogy. Pages 215-268 in - J.S. Cobb and B.F. P h i l l i p s , eds. The biology and management o f . l o b s t e r s , Vol. 1 Academic Press, New York. Aiken, D.E. 1980. M o l t i n g and growth. Pages 91-147 i n J.S. Cobb and B. F. Phillips, e: d s The b i o l o g y and management o f l o b s t e r s , Vol. 1 . Academic Press, New York. l o n g i p e s ( M i lne-Edwards). Mar. Freshwater Res. Aust. J. 27: 83-88.

1980. B e r r y , P.F., and M. J. Smale. An e s t i m a t e o f p r o d u c t i o n and consumption r a t e s i n t h e s p i n y l o b s t e r Panul ir u s homarus on a shal low 1 i t t o r a l r e e f o f f t h e N a t a l coast, South A f r i c a . Mar. Ecol. Prog. Ser. 2: 337-343. Chi ttl eborouqh. R. G. 1976. Growth o f j u v e n i 1e Panul ir u s 1ongipes cygnus George on c o a s t a l r e e f s compared w i t h those r e a r e d under o p t i m a l environmental c o n d i t i o n s . Aust. J. Mar. Freshwater Res. 27: 279-295. Crawford, D. R. 1921. Spawning h a b i t s o f t h e s p i n y l o b s t e r (Panul i r u s argus) w i t h notes on a r t i f i c i a l spawning. Trans. Am. F i s h . Soc. 50: 312-319. Crawford, D.R., and W. J.J. De Smidt. 1922. The s p i n y l o b s t e r , Panul ir u s argus, o f southern F l o r i d a : its n a t u r a l h i s t o r y and u t i 1 i z a t i o n . B u l l . Bur. F i s h . (U. S. ) 38: 281-310. Creaser, E. P. 1950. Repetition o f egg l a y i n g and number o f eggs o f Bermuda s p i n y l o b s t e r . Proc. G u l f Caribb. F i s h . I n s t . 230-31. Davis, G.E. 1971. Aggregations o f Spiny sea urchins, Diadema a n t i l l a r u m , as s h e l t e r f o r young Panul ir u s argus. s p i n y 1o b s t e r s , Trans. Am. F i s h . Soc. 100: 586-587. Davis, G.E. 1975. Minimum mature s p i n y l o b s t e r s , argus, a t Dry Tortugas, Trans. Am. F i s h . Soc. 104: size o f Panul ir u s Florida. 675-676.

Andree, S.W. 1981. Locomotory a c t i v i t y p a t t e r n s and f o o d i t e m s o f benthic p o s t l a r v a l spiny lobsters, 'M. 5. ~hesis: ~ a n ui r u s ' l argus. State U n i v e r s i t , ., v Florida . T a l l ahassee. A u s t i n , C.B. 1981. Difficulties of limiting entry into t h e overc a p i t a l ized F l o r i d a spiny l o b s t e r fishery. Proc. G u l f Caribb. F i s h . I n s t . 33:184-199. A u s t i n , H.M. 1972. Notes on d i s t r i b u t i o n o f phyllosoma o f t h e s p i n y l o b s t e r P a n u l i r u s spp. i n t h e G u l f o f Mexico. Proc. N a t l . S h e l l f i s h . Assoc. 62: 26-30. B e r r i l l , M. 1976. Aggressive beh a v i o r o f p o s t p u e r u l us 1arvae o f t h e western rock lobster Panul ir u s

Davis, G.E. 1977. E f f e c t s o f recreat i o n a l h a r v e s t on a s p i n y l o b s t e r , Bull. Panul ir u s argus, popujation. Mar. Sci . 27: 233-236. Davis , G. E. 1979. Management recommendations for juvenile s . ~nyi 1obsters , Panul ir i s argus , in Biscavne N a t i o n a l Monument. F l o r i d a . U.S. bep. I n t e r . So. Fla. * ~ e s .Rep. M-530. 32 pp. Davis, G.E. 1981. Effects o f injuries on spiny lobster, Panul ir u s argus, and imp1 i c a t i o n s f o r f i s h e r y management. U. S. N a t l . Mar. Fish. Serv. Fish. B u l l . 78: 979- 984. Davis, G.E., and J.W. D o d r i l l . 1980. Marine parks and s a n c t u a r i e s f o r s p i n y l o b s t e r f i s h e r y management. Inst. Proc. G u l f Caribb. Fish. 32: 194-207. Dawson, C. E., and C. P. I d y l l . 1951. I n v e s t i g a t i o n s on t h e F l o r i d a s .~ i " v n 1obster; Panul ir u s argus ( L a t r e i 1l e ) . Fla. Board Conserv. ~ e c h . Ser.-NO. 2. 39 pp. Eldred, B., C.R. Futch, and R.M. I n g l e . 1972. Studies o f j u v e n i l e spiny 1obsters , Panul ir u s argus, i n Biscavne Bav, F l o r i d a . Fla. Dep. Nat. - ~ e s o u r : - Mar. Res. Lab. spec. Sci. Rep. 35. 15 pp. George, R.W., and A. R. Main. 1967. The e v o l u t i o n o f s p i n y l o b s t e r s (Pal inuridae): study o f e v o l u t i o n i n t h e marine environment. Evolut i o n 21: 803-820. Gracia, A., and E. Lozano. 1980. baare marino A1 imentacion del Netuma platypogon y su i m p o r t a n c i a como i n d i c a d o r de r e c r u t a m i e n t o de post1 arves de l a n g o s t a (Decapoda: Pal inuridae) , Guerrero, Mexico. An. Centro Cienc. Mar. Limnol. Univ. Nac. Auton. , Mexico 7(2): 199-206. G u l f o f Mexico and South Fishery Management Atlantic Counci 1s

(GMSAFMC) . 1982. F i shery management p l a n , environmental impact statement and r e g u l a t o r y a n a l y s i s f o r s p i n y l o b s t e r i n t h e G u l f o f Mexico and South A t l a n t i c . March 1982. U.S. Dep. Commer. , Washington, D. C. , N a t l . Oceanic Atmos. Adm.

W. F. 1980. Spiny H e r r n k i nd, 1obsters: p a t t e r n s o f movement. Pages 349-407 J.S. Cobb and B.F. Phillips, eds. The b i o l o g y and 1 . management o f l o b s t e r s , Vol. Academic Press, New York.

Environmental Herrnkind, W. F. 1982. f a c t o r s t r i g g e r i n g mass m i g r a t i o n i n spiny l o b s t e r , ~ a n u l i r u s -argus: A progress r e p o r t . Pages 11-12 fi W.G. Lyons, ed. Proceedings o f a workshop on F l o r i d a s p i n y - l o b s t e r research and management, 13-14 August 1981. F l o r i d a Department o f N a t u r a l Resources, St. Petersburg. Herrnkind, W.F., and P. Kanciruk. s .~ i - v n 1978. Mass m i g r a t i o n of l o b s t e r , ~ a n uir& argus (Crustacea: l Pal i n u r i d a e ) : s v n o ~ s i s and o r i e n tation. Pages 430-439 in K. eds. Schmidt-Keonig and W. T. ~ e e t o K Animal m i g r a t i o n , n a v i g a t i o n , and homing. S p r i nger-Verl ag, New York.

-

Herrnkind, W. F. , J. Vanderwal k e r , and L. B a r r . 1975. P o p u l a t i o n dynami c s , ecology, and behavior o f s p i n y l o b s t e r , P a n u l i r u s argus, o f S t . John, U.S. V i r g i n I s l a n d s : habit a t i o n and p a t t e r n o f movements. R e s u l t s o f t h e T e k t i t e Program, Vol. 2. Nat. H i s t . Mus. Los Ang. Cty. Sci. B u l l . 20: 31-45. Hudson, J.H., D.M. A l l e n , and T.J. Costello. 1970. The f l o r a and fauna o f a b a s i n i n c e n t r a l F l o r i d a Bay. U.S. F i s h W i l d l . Serv. Spec. Sci. Rep. Fish. No. 604. 14 pp. I n g l e , R.M., and R. Witham. 1968. Biological considerations i n spiny l o b s t e r c u l t u r e . Proc. G u l f Caribb. Fish. I n s t . 21:158-162.

Inoue, M. 1978. Studies on t h e c u l t u r e d phyllosoma l a r v a e o f t h e Japanese s p i n y 1obster, Panul ir u s japonicus. I. Morphology o f t h e phyllosoma. B u l l . Jpn. Soc. Sci. Fish. 44:457-475. Kanciruk, P. 1980. Ecology o f juven i l e and a d u l t Pal inuridae ( s p i n y lobsters). Pages 59-92 i n J.S. Cobb and B.F. P h i l i p s , eds. The b i o l o g y and management o f l o b s t e r s , Vol. 2. Academic Press, New York. Kanciruk, P., and W.F. Herrnkind. 1976. Autumnal reproduction o f l s p i n y 1o b s t e r , ~ a n uir u s argus, a t B i m i n i . Bahamas. B u l l . Mar. Sci. P., and W.F. Herrnkind. Kanciruk, 1978. Mass m i g r a t i o n o f spiny l o b s t e r , P a n u l i r u s argus (Crustacea: Pal inuridae): behavior and e n v i ronmental c o r r e l a t e s . B u l l . Mar. Sci. 28: 601-623. Kennedy, F. S. , J r . 1982. Catch r a t e s o f lobster traps b a i t e d w i t h shorts, w i t h notes on e f f e c t s o f c o n f i n e ment. Page 20 i n W.G. Lyons, ed. Proceedings o f a workshop on F l o r i d a s p i ny 1o b s t e r research and manageFlorida ment, 13-14 August 1981. Department o f N a t u r a l Resources, St. Petersburg. 1951. Lewis, J.B. larvae of the Panulirus argus. 1 89-103. : The p h y l losoma spiny lobster, B u l l Mar. Sci.

F l o r i d a Keys, 1967-69. Nat. Resour. Mar. Res. Sci. Rep. 31. 23 pp.

Fla. Dep. Lab. Spec.

L i t t l e , E. J. 1977. Observations on recruitment of postlarval spiny l 1o b s t e r s , ~ a n uir u s argus , t o t h e south F l o r i d a coast. Fla. Mar. Res. Publ. No. 29. 35 pp.

'

L i t t l e , E.J., and G.R. Milano. 1980. Techniques t o monitor r e c r u i t m e n t ~ o s talr v a l s ~nvi 1obsters. of ~ a n ui r u s argus, t o - t h e ~ l o r i d a l Keys. Fla. Mar. Res. Publ. No. 37. Lyons, W. G. 1970. Scyl l a r i d l o b s t e r s Memoirs o f (Crustacea, Decapoda) : t h e Hourglass Cruises 1 1-74.

.

Lyons, W.G. 1980. The p o s t l a r v a l stage of scyl laridean lobsters. F i s h e r i e s 5:47-49. Lyons, W. G. 1981. P o s s i b l e sources o f F l o r i d a ' s s p i n y l o b s t e r population. Proc. G u l f Caribb. Fish. I n s t . 33:253-266. Lyons, W.G. , and F. S. Kennedy, J r . 1981. E f f e c t s o f h a r v e s t techniques on sublegal s p i n y l o b s t e r s and on subsequent f i s h e r y y i e l d . Proc. G u l f Fish. I n s t . 33: 290-300. Lyons, W.G., D.G. Barber, S.M. Foster, F. S . Kennedy, J r . , and G. R. M i lano. 1981. The s p i n y l o b s t e r , Panul ir u s argus, i n t h e middle and upper F l o r i d a Keys: p o p u l a t i o n s t r u c t u r e , seasonal dynamics, and reproduction. Fla. Mar. Res. Publ. No. 38. 38 pp. Marchal , E.G. 1968. Sur l a capture de l o n g des cotes A f r i c a i n e s de deux specimens de Panul i r u s argus (Latreil le). B u l l . Mus. N a t l . H i s t . Nat. 2 ser. 39:1120-1122. Marx, J. M. 1983. Macroalgal communit i e s as h a b i t a t f o r e a r l v b e n t h i c spiny l o b s t e r s , ~ a n ui r u s argus. l M.S. Thesis. Florida State U n i v e r s i t y , T a l l ahassee.

Lewis, J. B. , H. B. Moore, and W. Babi s. 1952. The p o s t l a r v a l stages o f t h e spiny lobster Panul i r u s argus. B u l l . Mar. Sci. 2:324-337. Lipcius, R. N., M. L. Edwards, W. F. H e r r n k i nd, and S. A. Waterman. 1983. I n si - -t u mating behavior o f t h e s p i n y l o b s t e r Panul i r u s argus. J. Crust. B i o l . 3: 217-222. L i t t l e , E. J. 1972. Tagging o f s p i n y l o b s t e r s (Panulirus argus) i n t h e

Menzies, R.A. 1981. Biochemical p o p u l a t i o n genetics and t h e spiny 1obster 1a r v a l recruitment problem: an update. Proc. G u l f Caribb. Fish. I n s t . 33:230-243. Menzies, R.A., and J.M. Kerrigan. 1979. I m p l i c a t i o n s o f spiny l o b s t e r recruitment patterns of the Caribbean -- a biochemical genetic approach. Proc. G u l f Caribb. Fish. I n s t . 31: 164-178 Mota-A1 ves , M. I , and R. C. F. Bezerra. . 1968. Sobre o numero de ovos da lagosta Panul irus argus ( L a t r . ). Arq. Estac. B i o l . Mar. Univ. Fed. Ceara 8: 33-35. Munro, J. L. 1974. The b i o l o g y , ecology, e x p l o i t a t i o n , and management o f Caribbean r e e f fishes. Sci. Rep. ODA/UWI Fish. Ecol. Res. P r o j . , 1969-1973. P a r t 6. The b i o l o g y , ecology, and bionomics o f Caribbean r e e f fishes: 6. Crustaceans (spiny W. l o b s t e r s and crabs). Univ. I n d i e s Zool. Dep. Res. Rep. No. 3. Kingston, Jamaica. 57 pp. Newman, G. G. , and D. E. Pol 1ock. 1974. Growth o f t h e rock l o b s t e r Jasus l a l a n d i i and i t s r e l a t i o n s h i p t o benthos. Mar. B i o l . (N.Y.) 24: 339- 346. 1975. Olsen, D.A. , and I . G . Kobl i c k . Population dynamics, ecology, and behavior of spiny lobster, Panulirus argus, o f S t . John, U.S. V i r g i n Islands: growth and mortality. Results o f t h e T e k t i t e program, Vol. 2. Nat. H i s t . Mus. Los 17-21. Ang. Cty. Sci. B u l l . 20: 01sen, D. A. , W. F. Herrnkind, and R. A. Cooper. 1975. Population dynamics, ecoloav. and behavior o f s ~ i n v l o b s t e r - Panu1irus argus, o f ' st: John. U.S. V i r a i n Islands: i n t r o duction. Nat. % s t . Mus. Los Ang. Cty. Sci. B u l l . 2O:ll-16. P h i l l i p s , B. F. , 1981. The c i r c u l a t i o n o f the southeastern I n d i a n Ocean and

t h e p l a n k t o n i c l i f e o f t h e western r o c k l o b s t e r . Oceanogr. Mar. B i o l . Annu. Rev. 19: 11-39. Phillips, B. F., and A.M. Sastry. 1980. Larval ecology. Pages 11-48 in - J.S. Cobb and B.F. P h i l l i p s , eds. The biology and management o f l o b s t e r s , Vol. 2. Academic Press, New York. 1968. Recent expeProvenzano, A.J. riments on t h e l a b o r a t o r y r e a r i n g o f t r o p i c a l l o b s t e r larvae. Proc. G u l f Carrib. Fish. I n s t . 21:152-157. Quackenbush, L. S. , and W. F. Herrnki nd. 1981. Regulation of m o l t and gonadal development i n t h e spiny l o b s t e r , Panulirus argus (Crustacea: Pal inuridae): e f f e c t o f eyestal k a b l a t i o n . Comp. Blochem. Physiol. 69A: 523-527. W. J., and T. Potthoff. Richards, 1981. D i s t r i b u t i o n and seasonal occurrence o f 1a r v a l p e l a g i c stages of spiny l o b s t e r s (Pal i n u r i d a e , Panul i r u s ) i n t h e western t r o p i c a l A t l a n t i c . Proc. G u l f Caribb. Fish. I n s t . 33:244-252. 1972. Factors a f f e c t i n g R i t z , D.A. the d i s t r i b u t i o n o f rock lobster 1arvae (Panul irus 1ongipes cygnus) , w i t h reference t o v a r i a b i l i t v o f Plankton-net catches. Mar. B i o l . 13: 309- 317. Robertson, P. B. 1968. The complete develo~ment o f t h e sand larval lobster, ~ c i l l arus ameri canus (Smith) (Decapoda: Scyl 1aridae) i n t h e 1aboratory , w i t h notes on 1arvae from t h e plankton. B u l l . Mar. Sci. 18: 294-342. Sims, H.W., and R.M. Ingle. 1967. Caribbean r e c r u i t m e n t o f F l o r i d a ' s spiny l o b s t e r population. Q. J. Fla. Acad. Sci. 29: 207-242. Sutcl if f e , W. H. 1952. Some observat i o n s o f t h e breeding and m i g r a t i o n of the Bermuda s p i ny 1obster,

Panul i r u s argus. Proc. G u l f Caribb. Fish. I n s t . 4: 64-69. Sweat, D. E. 1968. Growth and t a g g i n g studies on Panulirus argus ( L a t r e i l l e ) i n t h e F l o r i d a Keys. F l a . Board Conserv. Mar. Res. Lab. Tech. Ser. No. 57. 30 pp.

W i l l i a m s , A.B. 1965. Marine decapod crustaceans o f t h e Carol inas. U. S. Fish Wildl. Serv. Fish. Bull. 65: 1-291. Witham. R. 1974. P r e l i m i n a r v thermal s t u d i e s on young ~ a n u l i r i s argus. Q. J. F l a . Acad. Sci. 36:154-158. Witham, R . , R.M. I n g l e , and H.W. Sims, Jr. 1964. Notes on D o s t l a r v a e o f ~ a n u l i r u s argus. Q. j. Fla. Acad. Sci . 27: 289-297. Witham, R. , R.M. I n g l e , and E.A. Joyce, Jr. 1968. P h y s i o l o g i c a l and ecological studies of Panul i r u s argus from t h e St. L u c i e Estuary. F l a . Board Conserv. Mar. Res. Lab. Tech. Ser. No. 53. 3 1 pp.

D. L. Dubrow, and R.B. Tabb, D.C., Manning. 1962. The ecology o f n o r t h e r n F l o r i d a Bay and a d j a c e n t estuaries. F l a . S t a t e Board Conserv. Tech. Ser. No. 39. 8 1 pp.

V i l l e g a s , .L. , A.C. Jones, and R. F. Labi sky. 1982. Management s t r a t e g i e s f o r t h e spiny l o b s t e r resources i n t h e western c e n t r a l At1 a n t i c : a c o o p e r a t i v e approach. N. Am. J. Fish. Manage. 2:216-223. Warner, R.E., C. L. Combs, and D.R. Greaory. 1977. Biological studies Panul i r u s o f -the spiny lobster. araus (Deca~oda: Pal i n u r i d a e ) i n south ~ i o r i d a . Proc. G u l f ~ a r i b b . Fish. I n s t . 29: 166-183.

-

D. 1979. Low temperature Wynne, 1i m i t s on b e h a v i o r o f s p i ny l o b s t e r , argus (crustacea: Panul ir u s Pal i n u r i d a e ) . M. S. Thesis. F l o r i d a S t a t e U n i v e r s i t y , Tallahassee.

1978. Yang, M.C. K. , and B. Obert. S e l e c t e d s t a t i s t i c a l analyses o f Key West s p i n y l o b s t e r data. Pages 4-7 in - R.E. Warner, ed. Spiny l o b s t e r research review; proceedings o f a conference h e l d December 16, 1976 i n Key West, F l o r i d a . Sea Grant Tech. Pap. No. 4. 56 pp.

Waugh, G.T. 1981. Management o f j u v e n i l e s p i n y l o b s t e r (Panul ir u s argus) based on e s t i m a t e d b i o l o g i c a l parameters .from Grand Bahama I s l a n d , Bahamas. Proc. G u l f Caribb. F i s h . I n s t . 33:271-289.

SO171 -101

REPORT DOCUMENTATION PAGE

4. TRIO and Subtitle

'a

REmRT

2.

3. Rec~p~ant's Accession NO.

B i o l o g i c a l Report 82(11.61)

5. Rewrt Oate

Species P r o f i l e s : L i f e H i s t o r i e s and Envi ronmental Requi rements o f Coastal Fishes and I n v e r t e b r a t e s (South F l o r i d a ) Spiny Lobster

--

7. Author(%)

James M. Marx and W i l l i a m F. H e r r n k i n d

9. Pstfomlng Orpnlzatlon Narne and Address

Department of B i o l o g i c a l Science Florida State University T a l l ahassee, FL 32306

12. Sponsorin. Organization Narne and Addnss

11. Gontract(C) or Grant(G) No. I(C1

I

I

N a t i o n a l Wetlands Research Center F i s h and W i l d l i f e S e r v i c e U.S. Department o f t h e I n t e r i o r Washington, D 20240 C

15. Supplementary Notes

U. S. Army Corps o f Engineers Waterways Experiment S t a t i o n P.O. Box 631 Vicksburg, M 39180 S

I

*U.S.

Army Corps o f Engineers Report No. TR EL-82-4

I

.IS. Abstract (Umit: 200 words)

The F l o r i d a s p i n y l o b s t e r ( P a n u l i r u s argus) supports major commercial f i s h e r i e s i n south F l o r i d a and t h e Caribbean Sea. I t s l i f e h i s t o r y i n c l u d e s several l i f e stages t h a t l i v e i n t h e open ocean, i n s h o r e bays, and c o a s t a l r e e f s . The F l o r i d a p o p u l a t i o n spawns a l o n g deeper o f f s h o r e r e e f s i n s p r i n g and e a r l y summer. Fate o f l o c a l l y spawned l a r v a e i s u n c e r t a i n , b u t s i g n i f i c a n t p o s t l a r v a l r e c r u i t m e n t may o r i g i n a t e from l a r v a e spawned i n f o r e i g n waters. A f t e r s e t t l e m e n t i n i n s h o r e vegetated h a b i t a t s , j u v e n i l e s reach l e g a l h a r v e s t a b l e s i z e i n about 2 years. The onset o f m a t u r i t y i s c o i n c i d e n t w i t h a marked e m i g r a t i o n o f f s h o r e . Subsequent seasonal movements cued by r e p r o d u c t i v e a c t i v i t y and weather disturbances a r e pronounced. Excessive f i s h i n g has caused a d e c l i n e i n t h e s i z e o f t h e south F l o r i d a p o p u l a t i o n and a corresponding r e d u c t i o n i n t o t a l spawn. The relevance o f spawn r e d u c t i o n i s u n c e r t a i n because o f q u e s t i o n s r e g a r d i n g l a r v a l o r i g i n s and s t o c k - r e c r u i t m e n t r e l a t i o n s . Water temperatures p r o b a b l y r e g u l a t e p o p u l a t i o n d i s t r i b u t i o n and t h e seasonal dynamics o f growth and r e p r o d u c t i o n . P o s t l a r v a l r e c r u i t ment i s l i m i t e d t o h i g h s a l i n i t y i n s h o r e environments. Hydrodynamic s t i m u l i and water c i r c u l a t i o n p a t t e r n s p l a y c r i t i c a l r o l e s throughout t h e l i f e c y c l e .

I

17. Document Analmis

a. D e u r i e t o n

Lobsters Feeding h a b i t s Fisheries Temperature

L i f e cycles Growth Depth Sal in i t y

-

I

I

b. IdentlhenlOpen.Endad Terms

Spiny 1o b s t e r Panul ir u s argus Environmental requirements

c. GOSATI FieldlGmup

I

' 19.

Sccunty Class CThis Repart) 21. NO. of Pages

I & Availsbility Statement

Unlimited d i s t r i b u t i o n

(Sea ANSI-Z39.18)

21

20. Suurity Class (This Page)

Unclassified

OPTIONAL FORM 272 (4-77) (Formarly NTIS-35) Oapartment d Commena

.

REGION 1

Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multnornah Street Portland, Oregon 97232

REGION 2

Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, New Mexico 87 103

REGION 3

Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55 1 1 1

REGION 4

Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

REGION 5

Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158

REGION 6

Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225

REGION 7

Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503

TAKE PRIDE

in Amerzcd

DEPARTMENT OF THE WEO I TRR I

U.S. FISH AND WllDLlA SERVICE

As the Nation's principal conservation agency. the Department of the Interior has responsibility for most of our .nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resourcm, protecting our fish and wildlife, preserving thsenvironmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for paople who live in island territories under U.S. administration.

Information

31 pages

Find more like this

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

1270229

You might also be interested in

BETA
Microsoft Word - Tri-colored blackbird.doc