Read Microsoft PowerPoint - suslick grp.overview.20110927.pptx text version

Sonoluminescence

Hangxun Xu, Brad Zieger, Rusty Conner (Dlott Group)

Acoustic Cavitation: Growth & Implosive Collapse of Bubbles

ACOUSTIC PRESSURE

Sonochemistry & Materials

Maria Fortunato, Jinrui Guo, Maryam Sayyah, Hangxun Xu, Brad Zieger

Intense Plasma formed inside Collapsing Bubbles Sonochemistry Rig Sonochemical Synthesis of Amorphous Nanoparticles · Sonication of Fe(CO)5

Power Supply

Hollow Spheres and Crystals

SBSL

in 1-hexanol, under Ar, with oleic acid, 20oC, 20 KHz, 80 W

BUBBLE RADIUS (m)

40

IMPLOSION SHOCKWAVE HOT SPOT RAPID QUENCHING

Piezoelectric Transducer

· Amorphous on nm scale:

XRD, DSC, e-beam Microdiffraction

20

· Superparamagnetic

Titanium Horn Collar & O-Rings Gas Inlet/Outlet

Multibubble sonoluminescence

(i.e., single domain ferromagnet)

0 0 50 100 150

TIME (s)

· High Magnetization

comparable to commercial ferrofluids

MoO3 As prepared initially. After thermal annealing at 350oC.

The Islands of Chemistry

Cooling bath Glass Cell Reaction Solution

1st Hollow Crystals!

Fluorescent Carbon Nanodots Cavitation near Surfaces and Interparticle Collisions

SBSL from 85 wt% H2SO4 with Ar

10 Spectral Radiant Power (W/nm)

-8

Mechanoluminescence from Acoustic Cavitation

Mechanical

5.5 B 12,300 K

K

10-9

10,000 K 9,500 K

3.6 B

> 15

+ Light

,000

Stress Mechanoluminescence (ML): light produced during mechanical action on a solid

10

-10

2.9 B

0K ,00 15

10 ,00 0K K

9,000 K

-11

10

2.5 B

8,0

00

10

-12

9,000 K "Blackbody" 2.3 B 300 400 500 600 Wavelength (nm)

200

Ar Atom Emission 700 800

· · · ·

Observable temperatures above 15,000 K Observable pressures approaching 1,000 bar Emission from small molecules, atoms, and ions Definitive evidence for the generation of an energetic plasma

Suslick Group

Sonochemistry & Materials Chemistry Ultrasonic Spray Pyrolysis, Nanomaterials

Brandon Ito Minseok Jang Jon Kemling

L. A. Crum

Bubble collapse near surfaces creates high velocity jet: microscopic depth charge.

Two Zn particles fused together due to shock wave from imploding bubbles.

Fluorescent carbon nanodots made by sonicated Fenton Reaction of carbon nanoparticles.

Jon Askim

Katy Filson

Maria Fortunato

Jinrui Guo

Wei Jiang

Sonoluminescence Olfaction and Molecular Recognition The Optoelectronic Nose

www.scs.uiuc.edu/suslick

Sharp Touchscreen Colibri PXA320 PC on a chip:

USB, WiFi, GPS. exhaust

Howard Kim

Hengwei Lin

John Overcash Maryam Sayyah

Hangxun Xu

Brad Zeiger

Nasrin Gahvari

Ken Suslick

The Mammalian Olfactory System

· Olfactory epithelium

human: 1 cm2 per nostril (5 x 107 cells) dog: ~25 cm2 per nostril, highly reticulated

Chemo-Responsive Nanoporous Pigments:

· · · ·

olfactory epithelium

Ultrasonic Spray Pyrolysis (USP)

Continuous Production of Nano-Materials

· Even Humans can distinguish

>10,000 individual scents.

Lewis Acid Dyes: BrØnsted Acid/Base Dyes: Dyes with Large Dipoles: -Complexing Dyes:

metal ion dyes pH indicators solvatochromic extended -* dyes

metalloporphyrins base indicators acid indicators metal salts solvatochromic 9 mm

· ~800 semi-specific receptors:

3% of mammalian genome!

· Spray Drying · Film Deposition · Fine Powders · Quantum Dots · Nano-Catalysts

Product Collection

· Olfactory receptors are GPCRs.

Receptor structure speculative, but probably metalloproteins with conserved tripodal site.

disposable sensor array

collectors

4"

inlet

Ultrasonic Fountain

TEM of Au nanoparticles embedded in porous carbon microsphere

Product Densification

rri ca

Every odorant or mixture is represented as a unique 108-dimensional vector (36 R, G, B).

Before Exposure After Exposure Difference Map

diMePhphosphine Phosphines tri-n-Buphosphine aniline 3,5-lutidine 4-picoline Aromatic 3,4-lutidine 3-picoline 2-picoline Amines diisobutylamine pyridine

\\ \\ \\ \\

Ammonia (300 ppm) Arsine (3 ppm) Chlorine (10 ppm) Diborane (15 ppm) (CH3)2NH (500 ppm) Fluorine (25 ppm) Formaldehyde (20 ppm)

pr e ad cur dit so ion r

Solvent Evaporation/ Reactions

Difference Map is a "molecular fingerprint".

All VOCs easily distinguished.

The Chemist's "Radiation Badge" for Toxic Gases

er s ga

Hierarchically Porous Carbons

Aliphatic Amines Fluorous Acids Carboxylic Acids Aldehydes Esters Ketones Thiols Alcohols Aromatics Hydrocarbons

Biggest color changes are boxed in gray.

ammonia

|Rafter- Rbefore|, |Gafter- Gbefore|, |Bafter- Bbefore|

disecbutylamine di-n-butylamine heptylamine nonylamine undecylamine decylamine amylamine n-octylamine benzylamine cyclooctylamine C7F15CO2H CF3CO2H Cl3CCO2H acetic acid propionic acid heptanoic acid octanoic acid hexanoic acid pentanoic acid ClH2CH 2CO2H BrCH2 CO2H ClCH2CO2 H benzaldehyde o-tolualdehyde hexanal octylaldehyde heptaldehyde nonylaldehyde methyl benzoate ethyl benzoate 2-octanone 3-decanone 3-heptonone benzylthiol cyclohexanethiol 1-octanethiol 1-hexanethiol 1-pentanethiol benzyl alcohol cyclopentanol cycloheptanol heptanol nonanol 1-decanol p-xylene toluene benzene octane 1-octene 1-decene

Precursor Solution Droplet

\\

chemical classes, even for unknown odorants!

0 200

HCl (50 ppm)

HCN (50 ppm)

HF (30 ppm)

H2S (100 ppm)

Hydrazine (50 ppm)

Methylamine (100 ppm)

CH3NHNH2 (20 ppm)

Identification of

\\

1.7 MHz Ultrasonic Transducer

Nitric acid (25 ppm)

700

NO2 (20 ppm)

Phosgene (2 ppm)

Phosphine (50 ppm)

SO2 (100 ppm)

(CH3)3N (200 ppm)

Control (50% RH)

Squared Euclidean Distance /1000

\\

\\

3,000

microporous shell

internal macropores

Olfaction &Wei Jiang, Jonathan Kemling, Hengwei Lin Nose the Optoelectronic Jon Askim, Minseok Jang,

New SyntheticFortunato, Brandon Ito, Howard Kim, John Overcash, Maryam Sayyah Methods for Nanomaterials Maria

Suslick Group Overview

University of Illinois at Urbana-Champaign www.scs.uiuc.edu/suslick [email protected]

Sonochemistry: Nanomaterials from Ultrasound

High Intensity Ultrasound and Ultrasonic Spray Pyrolysis

Hollow Nanocrystals

· · · · · · · · ·

Porous Catalysts

Porous Oxides

Quantum Dots

Skrabalak, S. E.; Suslick, K. S., Porous MoS2 Synthesized by Ultrasonic Spray Pyrolysis" J. Am. Chem. Soc. 2005, 127, 9990-9991. Dhas, N. Arul; Suslick, K. S., "Sonochemical Preparation of Hollow Nanospheres and Hollow Nanocrystals" J. Am. Chem. Soc. 2005, 127, 2368-2369. Toublan, F.J.J.; Boppart, S.; Suslick, K. S., "Tumor Targeting by Surface Modified Protein Microspheres" J. Am. Chem. Soc. 2006, 128, 3472-3473. Skrabalak, S. E.; Suslick, K. S. "Porous Carbon Powders Prepared by Ultrasonic Spray Pyrolysis" J. Am. Chem. Soc. 2006, 128, 12642-12643. Bang, J. H.; Suslick, K. S. "Sonochemical Synthesis of Nanosized Hollow Hematite" J. Am. Chem. Soc. 2007, 129, 2242-2243. Suslick, K. S.; Skrabalak, S. E. "Sonocatalysis" In Handbook of Heterogeneous Catalysis, vol. 4; Ertl, G. et al., eds.; Wiley-VCH: Weinheim, 2008, pp. 2006-2017. Dunkle, S. S.; Helmich, R. J.; Suslick, K. S. "BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis" J. Phys. Chem., C, 2009, 11980-83. Bang, J. H.; Suslick, K. S. "Applications of Ultrasound to the Synthesis of Nanostructured Materials" Advanced Materials 2010, 22, 1039-1059 (invited review). Xu, H. X.; Suslick, K. S. "Sonochemical Synthesis of Highly Fluorescent Ag Nanoclusters" ACS Nano 2010, 4, 3209-3214.

Sonoluminescence

metalloporphyrins base indicators acid indicators metal salts

Chemical Sensing

9 mm

solvatochromic

hand-held colorimetric reader

· Didenko, Y.; McNamara III, W. B.; Suslick, K. S., "Molecular Emission from · · · · · ·

Single Bubble Sonoluminescence" Nature, 2000, 406, 877-879. Didenko, Y.; Suslick, K. S., "The Energy Efficiency of Formation of Photons, Radicals, and Ions During Single Bubble Cavitation" Nature 2002, 418, 394-397 Flannigan, D. J.; Suslick, K. S. "Plasma Formation and Temperature Measurement during Single-Bubble Cavitation" Nature 2005, 434, 52-55. Eddingsaas, N. C.; Suslick, K. S. "Mechanoluminescence: Light from sonication of crystal slurries" Nature, 2006, 444, 163. Suslick, K. S.; Flannigan, D. J. "Sonoluminescence" Annu. Rev. Phys. Chem. 2008, 59, 659-683. Xu, H.; Eddingsaas, N. C.; Suslick, K. S. "Spatial Separation of Cavitating Bubble Populations: The Nanodroplet Injection Model" J. Am. Chem. Soc. 2009, 131, 6060. Flannigan, D. J.; Suslick, K. S. "Inertially-Confined Plasma in an Imploding Bubble" Nature Physics 2010, 6, 598-601.

· Rakow, N. A.; Suslick, K. S., "A Colorimetric Sensor Array for Odor Visualization"

Nature, 2000, 406, 710-714.

· Zhang, C; Suslick, K. S., "A Colorimetric Sensor Array for Organics in Water",

J. Am. Chem. Soc. 2005, 127, 11548-11549.

· Janzen, M. C.; et al.; Suslick, K. S. "Colorimetric Sensor Arrays for Volatile

Organic Compounds" Anal. Chem. 2006, 78, 3591-3600.

· Suslick, K. S. et al. "Seeing Smells: Development Of An Optoelectronic Nose"

Quimica Nova 2007, 30, 677-681.

· Musto, C. J.; Lim, S. H.; Suslick, K. S. "Colorimetric Detection and Identification

of Natural and Artificial Sweeteners" Anal. Chem. 2009, 81, 6526-6533.

· Lim, S.H.; Feng, L.; Kemling, J. W.; Musto, C. J.; Suslick, K. S. "An Optoelectronic

Nose for Detection of Toxic Gases" Nature Chemistry, 2009, 1, 562-567.

· Feng, L.; Musto, C. J.; Suslick, K. S. "A Simple and Highly Sensitive Colorimetric

Detection of Gaseous Formaldehyde" J. Am. Chem. Soc., 2010, 132, 4046-4047.

Suslick Group Research Topics

www.scs.uiuc.edu/suslick

I. Sensors and Chemical Sensing

Mechanisms of Molecular Recognition Chemical Sensing & Chemical Sensors: "Smell-Seeing" Biophysics of Smell and Taste

II. Chemical Effects of Ultrasound

Sonoluminescence and Spectroscopy Synthetic Applications of Sonochemistry Nano-Materials and Catalytic Applications

10/4/2011

FRENAQsTM

Frequently Not-Asked Questions: Educational Philosophy

· Undergraduate education is the learning of

that which is already known: Graduate education is the learning of that which no one knows.

· Graduate education is learning how to do

what we call research: i.e., Graduate education is learning how to learn the unknown.

· I expect my students to become independent researchers:

I cannot do that if I treat you like a technician!

10/4/2011

1

Research Philosophy Criteria:

The very best research permanently changes

the way people think about some field of knowledge. If the goal of a project doesn't ultimately come up to that standard, the result will be boring.

Pure vs. Applied:

Pointless distinction.

More important: Is it interesting or boring?

Interdisciplinary and Multidisciplinary:

Both between areas of chemistry and including elements from multiple fields of science.

10/4/2011

Chemistry: 1900

Analytical

Inorganic

Physical

Organic

10/4/2011

2

Chemistry: 1950

Analytical Chemical Engineering Physical

Phys Org

Inorganic

Organomet

Organic

Biochem

10/4/2011

Chemistry: 2000

Analytical Chemical Engineering

Inorganic

Bio Molecular Materials inorg Biology Organo& met Nanosci Bio Phys Physical Org Organic org Biochem

"Forward, in all directions!"

­ Leon Trotsky

10/4/2011

3

Chem-Space

Living

Pharmacology

The Nano-

Biochemistry BioPhysical Polymeric Materials

Biology

Organic

Nuclear Physics

Small

1 amu 10 100 1000 104

Organometallic Physical Inorganic

Large

107

105

106

Scale Gap

Inorganic Materials

Non-Living

Materials Engineering; Solid State Physics

10/4/2011

Research in the Suslick Group

Living

Protein Microspheres

Small

1 amu 10 100

Chemical Sensing

1000

104

Nanoporous Pigments: Sol-Gel Sensors 6 105 10

Large

107

Sonoluminescence

Sonochemical Synthesis of Nanostructured Materials

Non-Living

10/4/2011

4

Current Group GSs & PDs

Sensors

Jon Askim

B.S., Western Washington Univ, 2008.

(10/2011)

Sonochemistry

Ginruo Guo

B.S., Nanjing Univ., 2009

Minseok Jang

B.S., Harvey Mudd, 2006.

Howard Kim

B.S., Seoul National Univ., 2004

Hengwei Lin (PDRA)

P.D., Stanford Univ.

John Overcash

B.S., Duke Univ., 2008

Darya Radziuk (PDRA)

Ph.D. Max-Planck Inst., 2010.

Maryam Sayyah

B.S., Sharif U. Tech, Tehran, 2007.

Sizhu You

B.S. Wuhan U., 2009

Group Admin.

Nasrin Gahvari

Brad Zieger

B.S., Western Washington Univ., 2007

10/4/2011

Past Group Members (2001-2011)

Richard Chou (PDRA) Ph.D. Mich. State U. Gennady Dantsin B.S., S.U.N.Y., Binghamton. Nate Eddingsaas B.S. U. Wisc. Ming Fang B.S. Jilin U. Dave Flannigan B.S., U. Minn. Maria Fortunato B.S., Penn State Richard Helming B.S. U. Florida Steve Hopkins B.S., Washington & Lee Wei Jiang (PDRA) Ph.D., UNM, 2009. Jonathan Kemling B.S., Michigan Tech. Margaret Kosal B.S., USC. Chris Musto B.S., Univ. West Florida. Tanya Prozorov M.S., Bar Ilan U. Jennifer Ponder B.S., Ball State. Neil Rakow B.S., Colorado School of Mines. Sara Skrabalak B.S., Washington U. Avijit Sen (postdoc) Ph.D., In. Inst. Sci., 1998. Won Suh B.S., Seoul National. Farah Toublan B.S., SUNY Buffalo Jiangyun Wang B.S., USTC. Hangxun Xu B.S., USTC, 2006 Chris Ziegler B.S., Bowdoin College Merck Pharmaceuticals Dekka Batteries Postdoc, Caltech (Okimura) PNNL Postdoc, Caltech (Zewail) Intel Mine Safety & Health Admin. Intel Postdoc, Stanford (Cool) 3M Asst. Prof., Georgia Tech U.S. Consumer Safety Commis. DOE Ames Lab Colgate-Palmolive 3M Asst. Prof., Indiana Univ. Platypus Technologies Postdoc, UCB (Tirrell) Stepan Chemicals Prof., Beijing Inst. Biophysics Postdoc, UIUC (Rogers) Assoc. Prof., Univ. of Akron

10/4/2011

5

Current Research Funding (09/2011)

2011 ­ 13 DoD; "An Optoelectronic Nose for Detection of Improvised Explosives" $712,000 / yr. $1,450,000 total. ONR; "Spontaneous energy concentration in energetic molecules, interfaces and composites." Collaboration w/ D. Dlott; $400,000 / yr. $1,200,000 total. NIH; "Colorimetric Sensor Arrays for VOC Dosimetry" $600,000 / yr. $2,460,000 total. NSF CHE; "Chemical Effects of High Intensity Ultrasound: Sonoluminescence" $140,000 / yr. $420,000 total. NSF DMR; "New Sonochemical Methodologies for Nanostructured Materials," $190,000 / yr. $280,000 total. EBI; "Applications of Ultrasound to Biofuel Production" $120,600 / yr. $241,000 total.

2011 ­ 15

2007 ­ 11

2010 ­ 13

2009 ­ 11

2010 ­ 12

Total Recent Funding:

$6.1 M

10/4/2011

Group Meetings

USUAL MEETING TIME: Mondays, 10:00 a.m., A414 CLSL. www.scs.uiuc.edu/suslick/groupmeetings SMALL GROUP MEETINGS Informal gatherings to discuss research results, problems and ideas. INDIVIDUAL MEETINGS Candid evaluation of progress and goals. 1-2 page typed summary with attached critical data RESEARCH TALKS About 40 minutes long, semi-formal with handout. LITERATURE TALKS Review 3-4 recent papers from a single author or on a single topic. A brief handout for group.

10/4/2011

6

Suslick Group Labs: 4th Floor CLS

solvents

Robot Printer Catalyst rig GCMS HPLC

fluorimeter

cab

laser table

cab

coulter

cab

double glove box

ref

Glv. Box

ref

frz

ref

frz

cab

LN2

A427

A429

A431

A433

A435

A441

Heterogen. Catalysis

N

Sonolum. Lab

Sonochem. Lab

Sensors & Synthesis Labs Suslick Office

A420 / A422

Instrument Lab Group Commons

A424

ref

Sonolum . Lab

A408

laser table

Ken Suslick: 333-2794

SGI

10/4/2011

Suslick Group Research Topics

www.scs.uiuc.edu/suslick

I. Sensors and Sensing

Mechanisms of Molecular Recognition Chemical Sensing & Chemical Sensors: "Smell-Seeing" Biophysics of Smell and Taste

II. Chemical Effects of Ultrasound

Sonoluminescence and Spectroscopy Synthetic Applications of Sonochemistry Materials and Catalytic Applications New Materials for Solar Energy Conversion

10/4/2011

mw

Labs:

333-1532

microscope

e chem

FTIR UV-vis

7

The Mammalian Olfactory System

· Olfactory epithelium

human: 1 cm2 per nostril (5 x 107 cells) dog: ~25 cm2 per nostril, highly reticulated

· Even Humans can distinguish

>10,000 individual scents.

olfactory epithelium

· ~500 semi-specific receptors:

2% of mammalian genome!

· Receptor structure speculative,

but probably metalloprotein

Wang, Luthey-Schulten, Suslick, PNAS 2003, 100, 3035.

10/4/2011

Chemical Sensing

Need: Uses:

Low-cost, but sensitive analysis of molecules in air. · Non-invasive Medical diagnosis · · · · · Chemical spills and toxins Security screening Personal Hygiene Food and drug spoilage Process control ...

Problem: Current Technology is not sensitive, not portable, or not cheap.

10/4/2011

8

Chemical Sensing is Molecular Recognition

How do molecules recognize each other?

Intermolecular Interactions:

Lewis (e- pair) Donor - Acceptor BrØnsted (proton) Acid - Base `Charge-Transfer', - Complexes

Hydrogen Bonding Dipole - Dipole van der Waals (physisorption)

100 kJ/mol 80 60 40 20 0

H

Most chemical sensing technology relies on the weakest and least selective interactions!

10/4/2011

Sensor Arrays: Concepts

· Make sensors disposable. · Probe a wide range of chemical interactions,

including strong sensor-analyte interactions.

· But still equilibrium based:

dose independent & reversible.

· Biomimetic: array of semi-specific sensors. · Include metal ion containing (Lewis acid) sensors

(as with the olfactory receptors, more later).

· Do it cheap: use visual reporters.

Convert olfactory-like responses to a visual output.

10/4/2011

9

Nanoporous Pigment Sensor Arrays

Chemo-responsive Pigment Classes:

· · · · Lewis Acid Dyes: BrØnsted Acid/Base Dyes: Dyes with Large Dipoles: -Complexing Dyes: metal ion containing dyes pH indicators solvatochromic extended -* dyes

metalloporphyrins base indicators acid indicators metal nanodots vapochromic Universal standard sensor array for sensing of all VOCs.

10/4/2011

9 mm

Colorimetric Array Detector

· Printed array of chemically responsive dyes. · Digitally image before & after exposure & subtract. · Difference Map is a "molecular fingerprint":

a unique 108-dimensional vector (36 R, G, B).

Before Exposure After Exposure Difference Map

(center avg. 300 pixels)

Biggest color changes are boxed in gray.

ammonia

|Rafter- Rbefore|, |Gafter- Gbefore|, |Bafter- Bbefore|

10/4/2011

10

Difference Maps are Molecular Fingerprints

decylamine

sec-Bu2amine

aniline

2-picoline

acetic acid

hexanethiol

benzylthiol

ethanol

pentanol

CF3CO2H

PhMe2phospine Bu3phosphine

hexanal

benzaldehyde

1-octene

Every volatile organic has a unique pattern, but with familial resemblances!

10/4/2011

Hierarchical Cluster Analysis

4

Another Dimension

2 4

6 1 3 5 1

2 6 5 3

One Dimension

Dissimilarity ("Euclidean Distance")

· Distance on x-axis gives "dissimilarity" (i.e, cluster radius). · Connectivity is meaningful, not vertical position. · Centroids of clusters are used for further clustering. · Dendrogram quantitatively shows what resembles what.

10/4/2011

11

HCA of 100 VOCs: All Distinct and Identifiable

Aldehydes Carboxylic Acids Strong Acids Arenes Alcohols

octanal hexanal heptanal nonanal o-tolualdehyde benzaldehyde decanal (d,l)-CH3CHPhCHO 1-myrtenal propionic acid acetic acid heptanoic acid octanoic acid BrCH2CH2CO2H Me3CCO2H Me2CHCO2H hexanoic acid pentanoic acid phenol formic acid CH3CHClCO2H ClCH CO H BrCH2CO2H 2 2 Cl3CCO2H CF3CO2H C7F15CO2H p-xylene toluene benzene nonanol dodecanol 1-decanol benzyl alcohol 2-decanol 3-decanol cycloheptanol

CH3CHPhCH2OH

//

Thiols Ketones Esters Hydrocarbons Phosphines Aromatic Amines Aliphatic Amines

butanol cyclopentanol 4-decanol heptanol ethanol 2-hexanol hexanol 3-hexanol pentanol 2-octanol octanol 3,3-Me2-2-butanol cyclohexanol pentylthiol hexylthiol cyclohexylthiol octylthiol benzylthiol 3-decanone 3-heptonone 2-octanone Me-benzoate Et-benzoate Me-octanoate Et-nonanoate trans-5-decene 1-decene 1-octene cyclohexene octane tetradecane dodecane Me2PhP (n-Bu)3P 3,5-lutidine 4-picoline 3-picoline pyridine 2-picoline 3,4-lutidine aniline dibenzylamine 3,5-dimethylaniline N,N-Me2hexylamine 1,5-Me2hexylamine t-octylamine di-sec-butylamine di-n-butylamine di-iso-butylamine triethylamine N,N-Me2benzylamine dipropylamine n-octylamine amylamine 2-heptylamine 2-Et-1-hexylamine cyclooctylamine heptylamine nonylamine dicyclohexylamine undecylamine decylamine benzylamine

chemical classes, even for unknown odorants!

//

Identification of

//

//

//

//

// // // // // // //

0

100

Squared Euclidean (Minimum Variance)

200

300

700

800

1400

3600

10/4/2011

20 High Hazard TICs at IDLH + DNT

Ammonia (300 ppm)

Arsine (3 ppm)

Chlorine (10 ppm)

Diborane (15 ppm)

(CH3)2NH (500 ppm)

Fluorine (25 ppm)

Formaldehyde (20 ppm)

HCl (50 ppm)

HCN (50 ppm)

HF (30 ppm)

H2S (100 ppm)

Hydrazine (50 ppm)

Methylamine (100 ppm)

CH3NHNH2 (20 ppm)

Nitric acid (25 ppm)

NO2 (20 ppm)

Phosgene (2 ppm)

Phosphine (50 ppm)

SO2 (100 ppm)

(CH3)3N (200 ppm)

DNT (diff. scale) (180 ppb)

Every pattern unique. In septuplicate trials (n=147), no statistical confusions at IDLH.

2 min, 4-19 10/4/2011

12

Beer

Czech Lager

Pilsner Urquell 4 Pilsner Urquell 2 Pilsner Urquell 3 Pilsner Urquell Ave. Pilsner Urquell 1 Miller Lite 4 Miller Lite Ave. Miller Lite 3 Miller Lite 2 Miller Lite 1 Miller Genuine Draft 4 Miller High Life 2 Miller Genuine Draft Ave. Miller Genuine Draft 3 Miller Genuine Draft 2 Miller Genuine Draft 1 Point Special Lager 3 Point Special Lager 4 Point Special Lager Ave. Point Special Lager 2 Point Special Lager 1 Miller High Life 1 Miller High Life Ave. Miller High Life 4 Miller High Life 3 Icehouse Ave. Icehouse 4 Icehouse 3 Icehouse 2 Icehouse 1 Leinenkugel's Original Lager 2 Leinenkugel's Original Lager Ave. Leinenkugel's Original Lager 4 Leinenkugel's Original Lager 3 Leinenkugel's Original Lager 1 Leinenkugel's Honey Weiss 1 Leinenkugel's Red Lager Ave. Leinenkugel's Red Lager 1 Leinenkugel's Red Lager 4 Leinenkugel's Red Lager 2 Leinenkugel's Red Lager 3 Goose Island Pils 4 Goose Island Pils Ave. Goose Island Pils 3 Goose Island Pils 2 Goose Island Pils 1 Leinenkugel's Honey Weiss Ave. Leinenkugel's Honey Weiss 4 Leinenkugel's Honey Weiss 3 Leinenkugel's Honey Weiss 2 Fuller's ESB Ale 1 Fuller's ESB Ale 2 Fuller's ESB Ale Ave. Fuller's ESB Ale 3 Fuller's ESB Ale 4 Guinness Draught 2 Guinness Draught 3 Guinness Draught 4 Guinness Draught Ave. Guinness Draught 1 Domaine DuPage 4 Domaine DuPage 3 Domaine DuPage 1 Domaine DuPage Ave. Bürgerbräu Roggenbier Ave. Bürgerbräu Roggenbier 4 Bürgerbräu Roggenbier 3 Bürgerbräu Roggenbier 1 Bürgerbräu Roggenbier 2 Hacker-Pschorr Weisse 2 Hacker-Pschorr Weisse 3 Hacker-Pschorr Weisse 1 Hacker-Pschorr Weisse Ave. Hacker-Pschorr Weisse 4 Domaine DuPage 2 Celebrator Doppelbock 1 Celebrator Doppelbock Ave. Celebrator Doppelbock 2 Celebrator Doppelbock 3 Celebrator Doppelbock 4 Tommyknocker Butt Head 2 Tommyknocker Butt Head 3 Tommyknocker Butt Head 4 Tommyknocker Butt Head Ave. Tommyknocker Butt Head 1 Leinenkugel's Berry Weiss 3 Leinenkugel's Berry Weiss 2 Leinenkugel's Berry Weiss 4 Leinenkugel's Berry Weiss Ave. Leinenkugel's Berry Weiss 1 5% EtOH in Soda Water 6% EtOH in Soda Water 4% EtOH in Soda Water 5% EtOH in Buffer

2 errors in 95 trials

American Lager

Lagers

German Lager American Pils American Ale English Ale Irish Ale French Ale German Ale German Bock

Ales

Berry Weiss Soda+EtOH 4-6%

Berry Weiss Ethanol + Soda

0 60,000 120,000 180,000 240,000 300,000

Squared Euclidean

10/4/2011

Bacterial Detection

· Diagnosis of infections still relies on cell culturing.

~106 bacteria for visible colony; ~24 to 48 hrs for many, BUT >7 days for others (e.g., TB).

· Bacteria better monitored by VOCs:

Volatiles in closed container are an integral of growth.

· Can we differentiate bacteria by smell?

· Array in Petri Dish · Inoculant: 200 µl BHI

liquid at 1 O.D.

· Solid Medium: TSA

w/ 5% sheep blood

10/4/2011

13

Pathogenic Bacteria

S. aureus

S. aureus MRSA

S. sciuri

S. epidermidis

E. faecium

P. aeruginosa E. faecalis VRE

E. faecalis

E. coli 53502

E. coli 25922

Human pathogenic bacteria clearly differentiable.

10/4/2011

Pathogenic Bacterial Growth Curves

100

20 most responsive RGBs vs. time (agar plate; TSA + 5% sheep blood)

Color Change

50 0 -50

-100 -150 100 50 0 -50

E. coli 25922

E. coli 53502

E. faecium

Color Change

-100 -150 100

S. aureus

MRSA

S. epidermidis

Color Change

50 0 -50 -100

-150

E. faecalis

0 100 200 300 400 500

E. faecalis VRE

0 100 200 300 400 500

P. aeruginosa

0 100 200 300 400 500

Time (min)

Time (min)

Time (min)

Human pathogenic bacteria rapidly differentiable (~3 hr).

10/4/2011

14

Hand-held Colorimetric Reader Prototype

disposable sensor array exhaust inlet Micron CMOS camera (white LED below) Needle Injector

Colibri PXA320; 0.8 GHz, 1GB, USB, WiFi, GPS.

PC on a chip: Toradex

Touchscreen: Sharp

WQVGA TFT

Parker micropump 4" (next version: <3"x 6")

4 AA or Rechargeable Li batteries

10/4/2011

Next Gen.: Linear Sensor Array with CCIS

A8 sized CCIS: 72 x 18 x 12 mm 27/8" x ¾" x ½"

LEDs

Magnified X-section View of CCIS

array cartridge

· Color Contact Image Sensor (CCIS):

digital copiers and card scanners. Very low power consumption. Analog output from photodiode. 1V 12 bit A/D improves S/N by ~32-fold vs. usual 8 bit CMOS camera or scanner.

Linearized Array

· · · ·

300 dpi CMOS linear image sensor.

Photodetector Array

· Requires linear colorimetric array:

better gas flow, lower dead volume, faster response time.

10/4/2011

15

Suslick Group Research Topics

www.scs.uiuc.edu/suslick

I. Sensors and Sensing

Mechanisms of Molecular Recognition Chemical Sensing & Chemical Sensors: "Smell-Seeing" Biophysics of Smell and Taste

II. Chemical Effects of Ultrasound

Sonoluminescence and Spectroscopy Synthetic Applications of Sonochemistry Materials and Catalytic Applications New Materials for Solar Energy Conversion

10/4/2011

Cavitational Collapse of Single Bubble

Strobed Single Bubble Rmax ~ 50 µm Rmin < 1 µm

35 kHz

10/4/2011

16

MBSL from Cr(CO)6 in Hexadecane

1200

Cr*

1000 800

Intensity

600 400

Cr * CH * C2 * C2 *

Cr *

200 0 350 400 450 background continuum 500 550 600

Wavelength (nm)

10/4/2011

Temperature vs. Calculated Cr Spectra

2.0

MBSL of Cr(CO)6 6000 K

Cr : 4700 K 300 K Mo: 4800 K 400 K C2 : 4900 K 300 K Fe : 5100 K 350 K

Relative Intensity

1.5

5000 K 4000 K

1.0

3000 K

0.5

0 350 370 390 410 430 450 470 490 510 530

10/4/2011

Wavelength (nm)

17

Why Nanostructured Catalysts?

·

Nanostructured: 1-10 nm, 100 to 104 atoms.

· Properties distinct from either bulk or molecular. · Surface atoms predominate: surface highly defected. · High catalytic activity, often unusual selectivities.

Why Sonochemistry?

· · · ·

Unique interaction of energy and matter. Every bubble is an isolated 10-18 L (aL) reactor. Extreme conditions, but extraordinary quench rates. Easy to produce both in lab and in scale-up.

10/4/2011

Sonochemical Synthesis of Nanostructured Materials

M(CO)x(NO)y ULTRASOUND Supported Catalyst Nanophase Colloids

Mn

Nanophase Metal Oxides

carbon hydro-

Nanophase Metal Sulfides

Nanophase Metals Powders or Carbides

n = 100 - 10,000

10/4/2011

18

Sonochemical Synthesis of Amorphous Iron Colloid

Sonication of Fe(CO)5 in 1-hexanol, under Ar, with oleic acid or polyvinylpyrollidone, 20oC, 20 KHz, 80 W Amorphous on nm scale: XRD, DSC, e-beam Microdiffraction Superparamagnetic (i.e., single domain ferromagnet) High Magnetization comparable to commercial ferrofluids

10/4/2011

Heterogeneous Catalysis with Nanostructured Materials

Goals: Stable High Surface Energy Materials (i.e., highly defected surfaces) Refractory Materials with High Surface Areas Catalytic Reactions of Use: Hydrodesulfurization (HDS) Hydrodehalogenation (HDH)

10/4/2011

19

Hollow MoS2

TEM hollow MoS2 nanospheres after thermal annealing at 450oC. 1. Sonicate Mo(CO)6 + S8 + 100nm SiO2 2. HF wash to remove SiO2 core.

MoS2 on SiO2

10/4/2011

Hollow Crystals (!) of MoO3

As prepared initially.

After thermal annealing at 350oC.

10/4/2011

20

MoS2 Nanospheres: HDS of Thiophene

After 24 hours of catalysis.

Aldrich MoS2 Sonochemical MoS2 Hollow MoS2 (150 nm) Hollow MoS2 (50 nm)

2

1

0

325

350

375

10/4/2011

Temperature (oC)

Sonocrystallization of Aspirin

Before 0s 2s

4s

6s

8s

10 s

12 s

14 s

1 cm

After

10/4/2011

21

Comparison of Preparation Methods

Aspirin crystallized from acetic acid at 20 C

100 m

100 m

10 m

100 m

As-Received

Quiescent

Hand-Ground

Scratched

25 m

25 m

Stirred

Seeded

100 m

25 m

Sonocrystallized: Cleaning Bath

Sonocrystallized: Horn Immersion

Horn sonocrystallized aspirin exhibits less clumping and has an excellent size distribution. (Ultrasonic bath ineffective, as expected.)

10/4/2011

Sonofragmentation: Time & Intensity

25 m Aspirin, initial

Average Volume per Particle (m3)

30000 25000 20000 15000 10000 5000 0.0 0 10 20

25 m 5.5 W 1 minute

Average Volume per Particle (m3)

25 m 10 W 1 minute

17500 15000 12500 10000 7500 5000 2500 0

25 m 30 W 1 minute

After 1 min sonication.

10 W 30 W

30

40

0

2

4

6

8

10

Acoustic Intensity (W)

Time (min)

10/4/2011

22

A Simple Breakage Model

Low Aspect ratio crystal morphology expected for friable materials: Needles will be broken in half above some threshold length.

Various possible breakage mechanisms: Particle-horn collisions Particle-cell collisions Particle-particle collisions Particle-shockwave interactions

10/4/2011

Effect of Particle Loading

Sonicated at 5.5 W for 10 seconds

55000

Average Volume per Particle (m3)

Before sonication.

50000 45000 40000 35000 30000 25000 20000 15000 10000 5000 0 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Mass Loading (g)

No particle concentration dependence is observed (!) Therefore, mech. must be direct shockwave fragmentation, not interparticle collisions.

10/4/2011

23

Ultrasonic Fountain and Nebulization

~1 cm

Suh and Suslick, J. Am. Chem. Soc. 2005, 127, 12007-12010 10/4/2011

Ultrasonic Spray Flow Synthesis

Synthetic Methodology:

furnace 2 product collector

Easy nanoparticle synthesis: droplets as isolated femtoliter reactors. One pot encapsulation, polymerization, & drying: in situ template synthesis. Porous solid synthesis: matrix with pyrolyzable template. Continuous and large scale production possible.

furnace 1

ultrasonic fountain carrier gas

1.7 MHz

piezoelectric

USP is an easily scalable & versatile synthetic methodology.

10/4/2011

24

USP of CdSe Q-dots

1.2

Fluorescence

0.8

0.4

220 240 260 280 300 320 340oC

0 450 550 650 750

Wavelength, nm

Conditions: Cd Ac2, Stearic acid, TOPSe residence time ~2 s.

10/4/2011

USP Synthesis of Porous MoS2

8:1 mole ratio Snowtex 80 nm colloidal silica to (NH4)2MoS4

Excess 10% HF in EtOH

100 m2/g

4:1 mole ratio Ludox 20 nm colloidal silica to (NH4)2MoS4

Excess 10% HF in EtOH

250 m2/g

Silica-MoS2 Composite

Porous MoS2

Leaching of SiO2 yields high surface area, porous MoS2

10/4/2011

25

USP Porous Carbons

New, facile route to porous carbons In situ template generation & removal Potential catalytic, adsorbent, and

electrochemical applications

Easy scale-up

710 m2/g

10/4/2011

Sucrose-Based Porous Carbon via USP

· Scalable production technology: USP · Simple, cheap precursors: sugar, carbohydrates.

Cn(H2O)n n C + n H2O

· No hazardous decomposition byproducts. · Rational design of very high surface area carbons. · Addition of alkali carbonate or nitrate salt to precursor

promotes decomposition of sucrose and gas decomposition products create internal pores.

10/4/2011

26

Internal Porosity vs. Salt

USP 0.5 M Sucrose + Salt, 800 °C, 1 L/min Argon

0.1 M NaNO3

solid

0.5 M Na2CO3

S. A. ~ 440 m2/g

0.5 M NaHCO3

S. A. ~ 800 m2/g

1.0 M Na2CO3

S. A. ~ 1115 m2/g

10/4/2011

Characterization of Porosity

TEM and BET shows hierarchical pore structure.

microporous shell

internal macropores

High surface areas indicate microporous shell allows access to internal macropores. Very narrow micropore distribution at 0.6 nm

10/4/2011

27

Conclusions

·

Ultrasound does High Energy Chemistry thru Cavitation. Cavitation Clouds: 5000 K, ~300 Atm., ~10-9 sec. Single Bubbles: >15,000K, ~1100 Atm., <10-9 sec. Sonochemistry: new tool for nanophased materials. Metals, alloys, carbides, sulfides, oxides all available: as colloids, supported catalysts, nanoporous solids. Extremely Active New Nanostructured Catalysts. Heterogeneous Systems: diverse & dramatic enhancements Metal Surface Activation: Inter-Particle Collisions. Ultrasonic Spray Pyrolysis as a versatile synthetic route.

10/4/2011

·

· · · ·

28

Information

Microsoft PowerPoint - suslick grp.overview.20110927.pptx

30 pages

Find more like this

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

574964