Read GenProductBrochUS.pdf text version

Sheet Piling

66, rue de Luxembourg L-4221 Esch-sur-Alzette (Luxembourg) Tel.: Fax: (+352) 5313 3105 (+352) 5313 3290 [email protected] www.alc.arcelor.com

E-mail: Internet:

STEEL SHEET PILING · GENERAL CATALOGUE · ED I T I O N 2 0 0 3

METRIC/IMPERIAL UNITS · EDITION 2003

ST HO EE T L S RO HE LL ET E D PIL IN G

GE

NE

RA

LC

AT AL

OG

UE

1-11-03-1-E

The data and commentary contained within this steel sheet piling document is for general information purposes only. It is provided without warranty of any kind. Arcelor Long Commercial shall not be held responsible for any errors, omissions or misuse of any of the enclosed information and hereby disclaims any and all liability resulting from the ability or inability to use the information contained within. Anyone making use of this material does so at his/her own risk. In no event will Arcelor Long Commercial be held liable for any damages including lost profits, lost savings or other incidental or consequential damages arising from use of or inability to use the information contained within. Our sheet pile range is liable to change without notice.

Realization: ars WERBE GMBH P108972 - 09/03

CONTENTS

Z SECTIONS

4

U SECTIONS

15

STRAIGHT WEB SECTIONS

28

BOX PILES

34

COMBINED WALLS

42

DRIVING ACCESSORIES

48

DURABILITY OF SHEET PILES

52

WATERTIGHTNESS

62

DECLUTCHING DETECTION

65

DELIVERY CONDITIONS

67

BEARING PILES

73

2

HISTORY

ProfilARBED

ProfilARBED is the production unit for long products in the ARCELOR Group. ProfilARBED is the world's first producer of sheet piles and bearing piles and has been playing a leading role in the development of piling technology for many years. For rapid, cost-effective and reliable structures, ProfilARBED produces piling series which are mainly characterized by a good ratio of section modulus to weight and a high moment of inertia. The sheet piles are used in the construction of quays and harbors, locks and moles, bank reinforcement on rivers and canals as well as for protection of excavations on land and in water and, in general, excavation work for bridge abutments, retaining walls, foundation structures, etc. Arcelor Long Commercial Sheet Piling is the sales and marketing company for steel sheet piling and bearing piles produced by ProfilARBED. Our Technical and Marketing Department offers comprehensive services throughout the world and customized support to all involved in the design, specification and installation of sheet and bearing piles, e.g. consulting engineers, architects, regional authorities, contractors and lecturers and their students.

The first steel sheet piles rolled in our mills were the `Ransome' and `Terre Rouge' piles in 1911 and 1912.

Our production program subsequently underwent constant improvement and development.

3

HISTORY

ProfilARBED

1911 Ransome

Sheet piles have been used for much longer than is normally imagined. Historically, they have been made of wood, cast-iron, and built-up sections. The era of steel sheet piling started with the introduction of new rolling technologies at the beginning of the 20th century.

1912 Terre Rouge

1933 Belval Z (BZ)

1948 Belval P (PBP)

1972 HZ for combined walls

The first big steel sheet pile project was the lock construction in Black Rock Harbor in the United States in 1908. This project used 6600 tons of Lackawanna straight web piles.

1978 Belval U (BU)

1979 Arbed Straight Web (AS 500)

1990 Arbed Z (AZ)

2000 Arbed U (AU)

Z SECTIONS

4a

Z SECTIONS

CHARACTERISTICS

The essential characteristics of the Z sheet pile are the continuous form of the web and the specific

location of the interlock symmetrically on both sides of the neutral axis. Both aspects have a positive influence on the section modulus. The AZ series, a combination of a section with extraordinary characteristics and the proven qualities of the Larssen interlock, has the following advantages: ­ an extremely competitive section modulus-to-mass ratio. ­ increased inertia, reducing deflection and allowing high-yield steels to be used for the most economical solution. ­ large width resulting in good installation performance. ­ good corrosion resistance, the steel being thickest at the critical corrosion points.

t s h b Section Width Height b in AZ 12 AZ 13 AZ 14 AZ 17 AZ 18 AZ 19 AZ 25 AZ 26 AZ 28 AZ 34 AZ 36 AZ 38 AZ 46 AZ 48 AZ 50 h in Thickness t in 0.335 0.375 0.413 0.335 0.375 0.413 0.472 0.512 0.551 0.669 0.709 0.748 0.709 0.748 0.787 0.394 s in 0.335 0.375 0.413 0.335 0.375 0.413 0.441 0.480 0.520 Sectional area in2/ft 5.94 6.47 7.03 6.53 7.11 7.74 8.74 9.35 9.97 Mass lb/ft of lb/ft2 single pile of wall 44.42 48.38 52.62 45.96 49.99 54.43 61.49 65.72 70.15 77.61 82.11 86.75 89.10 93.81 98.58 50.53 52.28 20.22 22.02 23.94 22.24 24.19 26.34 29.74 31.79 33.94 37.54 39.73 41.97 46.82 49.28 51.80 22.98 25.27 b Moment Elastic Static Plastic of inertia section moment section modulus modulus in4/ft 132.8 144.3 156.0 231.3 250.4 270.8 382.6 406.5 431.6 576.3 606.3 637.7 808.8 847.1 886.5 150.0 260.3 in3/ft 22.3 24.2 26.0 31.0 33.5 36.1 45.7 48.4 51.2 63.8 67.0 70.3 85.5 89.3 93.3 25.1 34.8 in3/ft 13.1 14.2 15.3 18.0 19.5 21.2 26.7 28.5 30.2 37.0 39.1 41.1 49.3 51.6 54.1 14.8 20.4 in3/ft 26.2 28.4 30.7 36.2 39.1 42.3 53.4 56.9 60.5 74.0 78.0 82.2 98.5 103.3 108.2 29.6 40.7 Class* S 240 S 270 S 320 S 355 S 390 S 430

5a

26.38 11.89 26.38 11.93 26.38 11.97 24.80 14.92 24.80 14.96 24.80 15.00 24.80 16.77 24.80 16.81 24.80 16.85 24.80 18.07 24.80 18.11 24.80 18.15 22.83 18.94 22.83 18.98 22.83 19.02

2 3 3 3 3 3 2 2 2 3 3 3 2 2 2 2 2 3 2 2 3 3 3 3 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 3

0.512 11.03 0.551 11.67 0.591 12.33 0.551 13.76 0.591 14.48 0.630 15.22 0.394 6.76

For minimum steel thicknesses of 0.394 in (10 mm): AZ 13 10/10 26.38 11.95 AZ 18 10/10 24.80 14.98 0.394 0.394 7.43 For minimum steel thicknesses of 0.5 in (12.7 mm):

AZ 26 + 0.5 24.80 16.83 0.531 0.500 9.66 67.94 32.87 419.2 49.8 29.3 58.7 2 2 2 2 2 2 *: Classification according to ENV 1993-5. Class 1 is obtained by verification of the rotation capacity for a class-2 cross-section. A set of tables with all the data required for design in accordance with ENV 1993-5 is available from our Technical Department.

Z SECTIONS

6a

Section

CHARACTERISTICS

S = Single pile D = Double pile Sectional area in2 AZ 12

0.335" y 45.4° 0.335"

Mass

Moment Elastic Radius of Coating of inertia section gyration area* modulus in4 in3 in ft2/ft

11.89"

y

Per S Per D Per ft of wall

13.05 26.10 5.94

44.42 lb/ft 88.83 lb/ft 20.22 lb/ft2

292.1 584.3 132.8

49.1 98.2 22.3

4.73 4.73 4.73

2.72 5.41 1.23

14.17" 52.76"

AZ 13

0.375" y 45.4° 0.375"

11.93"

y

Per S Per D Per ft of wall

14.21 28.43 6.47

48.38 lb/ft 96.76 lb/ft 22.02 lb/ft2

317.1 634.3 144.3

53.1 106.2 24.2

4.72 4.72 4.72

2.72 5.41 1.23

14.17" 52.76"

AZ 13 10/10

0.394"

y 45.4°

0.394"

11.95"

y

Per S Per D Per ft of wall

14.85 29.70 6.76

50.53 lb/ft 101.06 lb/ft 22.98 lb/ft2

329.6 659.2 150.0

55.2 110.5 25.1

4.71 4.71 4.71

2.72 5.41 1.23

14.17" 52.76"

AZ 14

11.97"

0.413" y 45.4° 0.413" y

Per S Per D Per ft of wall

15.45 30.91 7.03

52.62 lb/ft 105.23 lb/ft 23.94 lb/ft2

342.8 685.7 156.0

57.3 114.7 26.0

4.71 4.71 4.71

2.72 5.41 1.23

14.17" 52.76"

* One side, excluding inside of interlocks.

Z SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile Sectional area in2 AZ 17

0.335"

7a

Moment Elastic Radius of Coating of inertia section gyration area* modulus in4 in3 in ft2/ft

Mass

y 55.4° 13.70" 49.61"

14.92"

0.335"

y

Per S Per D Per ft of wall

13.50 27.00 6.53

45.96 lb/ft 91.93 lb/ft 22.24 lb/ft2

478.1 956.2 231.3

64.1 128.2 31.0

5.95 5.95 5.95

2.82 5.61 1.35

AZ 18

0.375"

y 55.4° 13.70" 49.61"

14.96"

0.375"

y

Per S Per D Per ft of wall

14.69 29.39 7.11

49.99 lb/ft 24.19 lb/ft2

517.5 250.4

69.3 138.5 33.5

5.93 5.93 5.93

2.82 5.61 1.35

99.99 lb/ft 1035.0

AZ 18 10/10

0.394"

y 55.4° 13.70" 49.61"

14.98"

0.394"

y

Per S Per D Per ft of wall

15.36 30.71 7.43

52.28 lb/ft 25.27 lb/ft2

537.9 260.3

71.7 143.7 34.8

5.92 5.92 5.92

2.82 5.61 1.35

104.49 lb/ft 1076.1

AZ 19

0.413"

y 55.4° 13.70" 49.61"

15.00"

0.413"

y

Per S Per D Per ft of wall

16.00 31.99 7.74

54.43 lb/ft 26.34 lb/ft2

559.8 270.8

74.6 149.2 36.1

5.92 5.92 5.92

2.82 5.61 1.35

108.86 lb/ft 1119.6

* One side, excluding inside of interlocks.

Z SECTIONS

8a

Section

CHARACTERISTICS

S = Single pile D = Double pile Sectional area in2 AZ 25

0.441" y 58.5° 13.66" 49.61" 0.472"

Mass

Moment Elastic Radius of Coating of inertia section gyration area* modulus in4 in3 in ft2/ft

16.77"

y

Per S Per D Per ft of wall

18.07 36.15 8.74

61.49 lb/ft 29.74 lb/ft2

790.7 382.6

94.3 188.6 45.7

6.61 6.61 6.61

2.95 5.84 1.41

122.97 lb/ft 1581.3

AZ 26

0.480" y 58.5°

0.512"

16.81"

y

13.66" 49.61"

Per S Per D Per ft of wall

19.31 38.63 9.35

65.72 lb/ft 31.79 lb/ft

2

840.2 406.5

100.1 200.2 48.4

6.59 6.59 6.59

2.95 5.84 1.41

131.44 lb/ft 1680.3

AZ 28

0.520" y 58.5°

0.551"

16.85"

y

13.66" 49.61"

Per S Per D Per ft of wall

20.62 41.23 9.97

70.15 lb/ft 33.94 lb/ft2

892.0 431.6

105.9 211.8 51.2

6.58 6.58 6.58

2.95 5.84 1.41

140.31 lb/ft 1784.1

AZ 34

0.512" y 63.4°

0.669"

18.07"

y

14.88" 49.61"

Per S Per D Per ft of wall

22.80 45.60 11.03

77.61 lb/ft 1191.2 155.22 lb/ft 2382.3 37.54 lb/ft

2

131.8 263.6 63.8

7.23 7.23 7.23

3.05 6.07 1.47

576.3

AZ 36

0.551" y 63.4°

0.709"

18.11"

y

14.88" 49.61"

Per S Per D Per ft of wall

24.13 48.27 11.67

82.11 lb/ft 1253.1 164.23 lb/ft 2506.3 39.73 lb/ft2 606.3

138.5 277.0 67.0

7.20 7.20 7.20

3.05 6.07 1.47

AZ 38

0.591" y 63.4°

0.748"

18.15"

y

14.88" 49.61"

Per S Per D Per ft of wall

25.50 51.00 12.33

86.75 lb/ft 1318.0 173.50 lb/ft 2636.0 41.97 lb/ft2 637.7

145.2 290.5 70.3

7.19 7.19 7.19

3.05 6.07 1.47

* One side, excluding inside of interlocks.

Z SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile Sectional area in2 AZ 46

0.551" y 71.5° 15.24" 45.67" 0.709" 18.94"

9a

Moment Elastic Radius of Coating of inertia section gyration area* modulus in4 in3 in ft2/ft

Mass

y

Per S Per D Per ft of wall

26.18 52.36 13.76

89.10 lb/ft 1539.0 178.21 lb/ft 3078.1 46.82 lb/ft2 808.8

162.6 325.3 85.5

7.67 7.67 7.67

3.12 6.20 1.63

AZ 48

0.591" y 71.5°

0.748" 18.98"

y

15.24" 45.67"

Per S Per D Per ft of wall

27.56 55.12 14.48

93.81 lb/ft 1611.8 187.61 lb/ft 3223.7 49.28 lb/ft2 847.1

170.0 339.9 89.3

7.65 7.65 7.65

3.12 6.20 1.63

AZ 50

0.787" 19.02" 0.630"

y 71.5° 15.24" 45.67"

y

Per S Per D Per ft of wall 28.97 57.94 15.22 98.58 lb/ft 1686.9 197.16 lb/ft 3373.8 51.80 lb/ft2 886.5 177.6 354.9 93.3 7.63 7.63 7.63 3.12 6.20 1.63

* One side, excluding inside of interlocks.

Z SECTIONS

10a

DELIVERY FORMS AND INTERLOCKING

AZ Interlock

in accordance with EN 10248

Delivery Forms

In order to comply with project-specific layout requirements, the various AZ sections can be ordered in the following configurations: Single Pile

Position A Double Pile

Position B

Form I standard

Form II on request

It is recommended AZ sections be used threaded to double piles. For AZ piles, fixing of the interlock of double piles is not required for static reasons. On customer request, however AZ piles may be crimped according to the following standard specification.

AZ-Section Standard Crimping

Pile length 19.7 ft: 4 crimping points every 11.8 ft Pile length < 19.7 ft: 2 crimping points every 5.9 ft

3.9" < 19.7" 3.9" 3.9" 3.9" 3.9" < 19.7" 27.6" 114.2" 141.8" 27.6"

70.9"

Crimping points

Reinforced crimping on request. Max. distance of a double crimping point from the toe: 1.5 ft.

Interlocking Possibilities

The interlock of every AZ section fits into the interlock of all other hot rolled sections of the ProfilARBED production program (except straight web piles).

3.9"

70.9"

3.9"

Crimping points

Z SECTIONS

CORNER SECTIONS AND CORNER PILES

11a

Corner Sections

Special corner sections interlocking with every section of the AZ series make it possible to form corner or junction piles without resorting to fabricated piles in most cases.

2.76" 0.98" 0.98"

OMEGA 18 Mass ~ 12.10 lb/ft

1.18"

C 14 Mass ~ 9.68 lb/ft

0.79" 1.18" 0.59"

C9 Mass ~ 6.25 lb/ft

DELTA 13 Mass ~ 8.80 lb/ft

The corner sections are fixed to the main sheet pile in accordance with EN 12063. Different welding specifications on request. The corner sections are threaded and welded with a setback of 7.9 in from the top of the piles.

Corner Piles

1051 1052

1061

1062

1071

1072

1072

The configurations shown can be supplied as double or single piles.

Z SECTIONS

4

Z SECTIONS

CHARACTERISTICS

The essential characteristics of the Z sheet pile are the continuous form of the web and the specific

location of the interlock symmetrically on both sides of the neutral axis. Both aspects have a positive influence on the section modulus. The AZ series, a combination of a section with extraordinary characteristics and the proven qualities of the Larssen interlock, has the following advantages: ­ an extremely competitive section modulus-to-mass ratio. ­ increased inertia, reducing deflection and allowing high-yield steels to be used for the most economical solution. ­ large width resulting in good installation performance. ­ good corrosion resistance, the steel being thickest at the critical corrosion points.

t s h b Section Width Height b mm AZ 12 AZ 13 AZ 14 AZ 17 AZ 18 AZ 19 AZ 25 AZ 26 AZ 28 AZ 34 AZ 36 AZ 38 AZ 46 AZ 48 AZ 50 670 670 670 630 630 630 630 630 630 630 630 630 580 580 580 h mm 302 303 304 379 380 381 426 427 428 459 460 461 481 482 483 304 Thickness t mm 8.5 9.5 10.5 8.5 9.5 10.5 12.0 13.0 14.0 17.0 18.0 19.0 18.0 19.0 20.0 10.0 s mm 8.5 9.5 10.5 8.5 9.5 10.5 11.2 12.2 13.2 13.0 14.0 15.0 14.0 15.0 16.0 10.0 Sectional area cm2/m 126 137 149 138 150 164 185 198 211 234 247 261 291 307 322 143 157 Mass b Moment Elastic Static Plastic of inertia section moment section modulus modulus cm3/m 1200 1300 1400 1665 1800 1940 2455 2600 2755 3430 3600 3780 4595 4800 5015 1350 1870 cm3/m 705 765 825 970 1050 1140 1435 1530 1625 1990 2100 2210 2650 2775 2910 795 1095 cm3/m 1409 1528 1651 1944 2104 2275 2873 3059 3252 3980 4196 4417 5295 5553 5816 1589 2189 Class* S 240 S 270 S 320 S 355 S 390 S 430

5

kg/m of kg/m2 single pile of wall cm4/m 66.1 72.0 78.3 68.4 74.4 81.0 91.5 97.8 104.4 115.5 122.2 129.1 132.6 139.6 146.7 75.2 77.8 99 107 117 109 118 129 145 155 166 183 194 205 229 241 253 112 123 18140 19700 21300 31580 34200 36980 52250 55510 58940 78700 82800 87080 110450 115670 121060 20480 35540

2 3 3 3 3 3 2 2 2 3 3 3 2 2 2 2 2 3 2 2 3 3 3 3 2 2 2 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 3

For minimum steel thicknesses of 10 mm: AZ 13 10/10 670 AZ 18 10/10 630 381 10.0 10.0 For minimum steel thicknesses of 12.7 mm:

AZ 26 + 0.5 630 428 13.5 12.7 204 101.1 161 57240 2675 1575 3155 2 2 2 2 2 2 *: Classification according to ENV 1993-5. Class 1 is obtained by verification of the rotation capacity for a class-2 cross-section. A set of tables with all the data required for design in accordance with ENV 1993-5 is available from our Technical Department.

Z SECTIONS

6

Section

CHARACTERISTICS

S = Single pile D = Double pile Sectional area cm2 AZ 12

8.5 y 45.4° 8.5

Mass

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

302

y

Per S Per D Per m of wall

84.2 168.4 125.7

66.1 kg/m 132.2 kg/m 98.7 kg/m2

12160 24320 18140

805 1610 1200

12.02 12.02 12.02

0.83 1.65 1.23

~360 1340

AZ 13

9.5 y 45.4° 9.5

303

y

Per S Per D Per m of wall

91.7 183.4 136.9

72.0 kg/m 144.0 kg/m 107.5 kg/m2

13200 26400 19700

870 1740 1300

11.99 11.99 11.99

0.83 1.65 1.23

~360 1340

AZ 13 10/10

10.0 y 45.4° 10.0

303.5

y

~360 1340

Per S Per D Per m of wall

95.8 191.6 143.0

75.2 kg/m 150.4 kg/m 112.2 kg/m2

13720 27440 20480

905 1810 1350

11.97 11.97 11.97

0.83 1.65 1.23

AZ 14

10.5 y 45.4° 10.5

304

y

Per S Per D Per m of wall

99.7 199.4 148.9

78.3 kg/m 156.6 kg/m 116.9 kg/m2

14270 28540 21300

939 1880 1400

11.96 11.96 11.96

0.83 1.65 1.23

~360 1340

* One side, excluding inside of interlocks.

Z SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile Sectional area cm2 AZ 17

8.5 8.5 y

7

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

Mass

379

55.4°

~348 1260

y

Per S Per D Per m of wall

87.1 174.2 138.3

68.4 kg/m 136.8 kg/m 108.6 kg/m2

19900 39800 31580

1050 2100 1665

15.12 15.12 15.12

0.86 1.71 1.35

AZ 18

9.5 y

9.5

380

55.4°

~348 1260

y

Per S Per D Per m of wall

94.8 189.6 150.4

74.4 kg/m 148.8 kg/m 118.1 kg/m

2

21540 43080 34200

1135 2270 1800

15.07 15.07 15.07

0.86 1.71 1.35

AZ 18 10/10

10.0 y

10.0

380.5

55.4°

~348 1260

y

Per S Per D Per m of wall

99.1 198.1 157.2

77.8 kg/m 155.5 kg/m 123.4 kg/m2

22390 44790 35540

1175 2355 1870

15.04 15.04 15.04

0.86 1.71 1.35

AZ 19

10.5 y

10.5

381

55.4°

~348 1260

y

Per S Per D Per m of wall

103.2 206.4 163.8

81.0 kg/m 162.0 kg/m 128.6 kg/m2

23300 46600 36980

1223 2445 1940

15.03 15.03 15.03

0.86 1.71 1.35

* One side, excluding inside of interlocks.

Z SECTIONS

8

Section

CHARACTERISTICS

S = Single pile D = Double pile Sectional area cm2 AZ 25

11.2 y 12.0

Mass

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

426

58.5°

~347 1260

y

Per S Per D Per m of wall

116.6 233.2 185.0

91.5 kg/m 183.0 kg/m 145.2 kg/m2

32910 65820 52250

1545 3090 2455

16.80 16.80 16.80

0.90 1.78 1.41

AZ 26

12.2 y

13.0

427

58.5°

~347 1260

y

Per S Per D Per m of wall

124.6 249.2 198.0

97.8 kg/m 195.6 kg/m 155.2 kg/m

2

34970 69940 55510

1640 3280 2600

16.75 16.75 16.75

0.90 1.78 1.41

AZ 28

13.2 y

14.0

428

58.5°

~347 1260

y

Per S Per D Per m of wall

133.0 266.0 211.1

104.4 kg/m 208.8 kg/m 165.7 kg/m2

37130 74260 58940

1735 3470 2755

16.71 16.71 16.71

0.90 1.78 1.41

AZ 34

13.0 y 63.4°

17.0

459

~378 1260

y

Per S Per D Per m of wall

147.1 294.2 233.5

115.5 kg/m 231.0 kg/m 183.3 kg/m

2

49580 99160 78700

2160 4320 3430

18.36 18.36 18.36

0.93 1.85 1.47

AZ 36

14.0 y 63.4°

18.0

460

~378 1260

y

Per S Per D Per m of wall

155.7 311.4 247.1

122.2 kg/m 244.4 kg/m 194.0 kg/m2

52160 104320 82800

2270 4540 3600

18.30 18.30 18.30

0.93 1.85 1.47

AZ 38

15.0 y 63.4°

19.0

461

~378 1260

y

Per S Per D Per m of wall

164.5 329.0 261.0

129.1 kg/m 258.2 kg/m 204.9 kg/m2

54860 109720 87080

2380 4760 3780

18.26 18.26 18.26

0.93 1.85 1.47

* One side, excluding inside of interlocks.

Z SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile Sectional area cm2 AZ 46

14.0 71.5° ~387 1160 481 y y 18.0

9

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

Mass

Per S Per D Per m of wall

168.9 337.8 291.2

132.6 kg/m 265.2 kg/m

64060 128120

2665 5330 4595

19.48 19.48 19.48

0.95 1.89 1.63

228.6 kg/m2 110450

AZ 48

15.0 71.5°

19.0

~387 1160

482

y

y

Per S Per D Per m of wall

177.8 355.6 306.5

139.6 kg/m 279.2 kg/m

67090 134180

2785 5570 4800

19.43 19.43 19.43

0.95 1.89 1.63

240.6 kg/m2 115670

AZ 50

20.0 16.0

71.5°

~387 1160

483

y

y

Per S Per D Per m of wall 186.9 373.8 322.2 146.7 kg/m 293.4 kg/m 70215 140430 2910 5815 5015 19.38 19.38 19.38 0.95 1.89 1.63

252.9 kg/m2 121060

* One side, excluding inside of interlocks.

Z SECTIONS

10

DELIVERY FORMS AND INTERLOCKING

AZ Interlock

in accordance with EN 10248

Delivery Forms

In order to comply with project-specific layout requirements, the various AZ sections can be ordered in the following configurations: Single Pile

Position A Double Pile

Position B

Form I standard

Form II on request

It is recommended AZ sections be used threaded to double piles. For AZ piles, fixing of the interlock of double piles is not required for static reasons. On customer request, however AZ piles may be crimped according to the following standard specification.

AZ-Section Standard Crimping

Pile length 6.0 m : 4 crimping points every 3.6 m Pile length < 6.0 m : 2 crimping points every 1.8 m

100 100 100 100 100 < 500 < 500 700 2900 3600 700

1800

Crimping points

Reinforced crimping on request. Max. distance of a double crimping point from the toe: 450 mm.

Interlocking Possibilities

The interlock of every AZ section fits into the interlock of all other hot rolled sections of the ProfilARBED production program (except straight web piles).

100

1800

100

Crimping points

Z SECTIONS

CORNER SECTIONS AND CORNER PILES

11

Corner Sections

Special corner sections interlocking with every section of the AZ series make it possible to form corner or junction piles without resorting to fabricated piles in most cases.

OMEGA 18 Mass ~ 18.0 kg/m

C 14 Mass ~ 14.4 kg/m

C9 Mass ~ 9.3 kg/m

DELTA 13 Mass ~ 13.1 kg/m

The corner sections are fixed to the main sheet pile in accordance with EN 12063. Different welding specifications on request. The corner sections are threaded and welded with a setback of 200 mm from the top of the piles.

Corner Piles

1051 1052

1061

1062

1071

1072

1072

The configurations shown can be supplied as double or single piles.

Z SECTIONS

12

JUNCTION PILES AND CORNER PILES

The following special piles are usually delivered as single piles. Double piles upon request

Junction Piles

1201

1202

1203

> 50mm

1215

1216

1217

1231

1232

1233

Corner Piles

1101

1102

1103

All these configurations can also be achieved with C 14, OMEGA 18 and DELTA 13 sections. Other configurations are possible on request.

Z SECTIONS

ARCS AND CIRCLES

13

Interlock Swing

Each interlock allows a certain rotation. The maximum angle of deviation (the interlock swing) depends on the pile section and length, the soil conditions, and the installation method. In general, the maximum deviation of an interlock is 5°.

max

max

max. deviation angle 5° Beyond this value the piles have to be bent.

1651

2

1652

2

The maximum bending angle is = 25°. The piles are bent in the middle of the web. In general, bent piles are delivered as single piles. Double piles upon request.

Z SECTIONS

14

ANCHORAGE

Tie-Back Systems

Most sheet pile retaining walls need supplementary support at the top, in addition to embedment in the soil. Temporary cofferdams generally use walers and struts for crossbracing inside the excavation. Permanent or large retaining walls are often tied back to an anchor wall installed a certain distance behind the wall. Other anchor systems, like injection anchors or anchor piles, can also be used. The following drawing shows a typical horizontal tie-rod connection for sheet pile walls. The following components can be seen: 1 Plain tie-rod

3 5 9 15 7 5 8 1 3 13 14 12 10 11 6 3 14 9 13 12 4 2 5 3 3 8 9

5 3

7

1

4

2

7

2 Upset end tie-rod 3 Nut 4 Turnbuckle 5 Bearing plate 6 Bearing plate on concrete 7 Waling 8 Spacer 9 Supporting console 10 Splicing plate 11 Splicing bolt 12 Fixing bolt 13 14 15

}

Fixing plate

U SECTIONS

15

U SECTIONS

CHARACTERISTICS

16

The new AU series represents the following characteristics:

Steel savings: by optimising the geometric dimensions, a weight reduction in mass of about 10% compared to the former PU series has been achieved. The diversity of the AU range allows you to match the specific bending resistance requirements in the most profitable way. Improved driving efficiency: the smooth and open shape of the new AU series and the patented radii at the web/flange connection reduce the required driving energy.

Increased width: a width of 750 mm (single pile) reduces the number of elements. Installation time is also reduced.

Reduced perimeter: due to the increased width of the pile, a 10% reduction of the perimeter has been achieved. This also cuts down the surface coating, e.g. painting.

Fewer interlocks: the number of interlocks per linear metre of wall will also decrease. This has a direct effect on the watertightness of the wall which is improved. The reduction in the number of interlocks also leads to a reduction in waterproofing costs (BELTAN, ROXAN, welding) if watertightness needs to be reinforced. The AU series interlocks are LARSSEN type interlocks just as used with the PU series.

U SECTIONS

CHARACTERISTICS

ince the beginning of the last century millions of tons of U sheet piles have been used all over the world for every kind of structure. The advantages of U piles are multiple: ­ A wide range of sections forming several series with various geometrical characteristics, offering the choice of the section technically and economically best suited for a specific project. ­ The combination of great wave depth with big flange thickness giving excellent statical properties. ­ The symmetrical form of the single element has made these sheets particulary convenient for re-use. ­ The possibility of assembling and crimping the piles to pairs in the mill provides an improvement of the installation quality and performance. ­ Easy fixing of tie-rods and swivelling attachments, even under water. ­ Good corrosion resistance, the biggest steel thickness lying on the outer part of the geometry

S

17

Section

Width Height b mm h mm 408 411 412 441 444 445 447 450 451 226 280 360 360 380 430 452 452 340 400 440 250

Thickness t mm 10.0 11.5 12.0 10.5 12.0 12.5 13.0 14.5 15.0 7.5 8.0 9.8 10.0 12.0 12.4 14.2 19.5 12.3 14.1 15.5 13.0 s mm 8.3 9.3 9.7 9.1 10.0 10.3 9.5 10.2 10.5 6.4 8.0 9.0 10.0 9.0 10.0 10.0 11.0 9.0 10.0 10.0 -

Sectional area cm2/m 132 147 151 150 165 169 173 188 192 97 116 140 148 159 179 199 242 177 201 219 191

Mass

kg/m of kg/m2 single pile of wall cm4/m 77.9 86.3 89.0 88.5 96.9 99.7 102.1 110.4 113.2 45.6 54.5 66.1 69.9 74.7 84.3 93.6 114.1 69.7 78.9 86.2 60 104 115 119 118 129 133 136 147 151 76 91 110 116 124 140 156 190 139 158 172 150 28710 32850 34270 39300 44440 46180 50700 56240 58140 6780 11620 21600 22580 30400 43000 56490 72320 27200 40010 55010 16800

cm3/m 1410 1600 1665 1780 2000 2075 2270 2500 2580 600 830 1200 1255 1600 2000 2500 3200 1600 2000 2500 1340

cm3/m 820 935 975 1028 1157 1200 1285 1420 1465 335 480 715 755 925 1165 1435 1825 915 1175 1455 730

cm3/m 1663 1891 1968 2082 2339 2423 2600 2866 2955 697 983 1457 1535 1878 2363 2899 3687 1871 2389 2956 -

AU 14 AU 16 AU 17 AU 18 AU 20 AU 21 AU 23 AU 25 AU 26 PU 6 PU 8 PU 12 PU 16 PU 20 PU 25 PU 32 L2S L3S L4S JSP3

750 750 750 750 750 750 750 750 750 600 600 600 600 600 600 600 500 500 500 400

PU 12 10/10 600

The moment of inertia and section moduli values given assume correct shear transfer across the interlock. *: Classification according to ENV 1993-5. Class 1 is obtained by verification of the rotation capacity for a class 2 cross-section. A set of tables with all the data required for design in accordance with ENV 1993-5 is available from our Technical Department. All PU sections can be rolled-up or -down by 0.5 mm and 1.0 mm. Other sections on request.

S 240 S 270 S 320 S 355 S 390 S 430 2 2 2 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 3 3 3 4 4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Moment Elastic Static Plastic of inertia section moment section modulus modulus

Class*

U SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile T = Triple pile Sectional area cm2 AU 14

y y'' y' 408 ~303 47.8° 10.0 8.3 122.6 40.9 y' y y''

Mass

18

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

Per S Per D Per T Per m of wall

99.2 198.5 297.7 132.3

77.9 kg/m 155.8 kg/m 233.7 kg/m 103.8 kg/m2

6590 43060 59610 28710

456 2110 2410 1410

8.15 14.73 14.15 14.73

0.96 1.91 2.86 1.27

1500

AU 16

y y'' y' 411 ~303

47.8° 11.5 9.3 126.3 42.1 y' y y''

Per S Per D Per T Per m of wall

109.9 219.7 329.6 146.5

86.3 kg/m 172.5 kg/m 258.7 kg/m 115.0 kg/m2

7110 49280 68080 32850

481 2400 2750 1600

8.04 14.98 14.37 14.98

0.96 1.91 2.86 1.27

1500

AU 17

y y'' y' 412 ~303

47.8° 12.0 127.4 42.5

9.7 y' y y''

Per S Per D Per T Per m of wall

113.4 226.9 340.3 151.2

89.0 kg/m 178.1 kg/m 267.2 kg/m 118.7 kg/m2

7270 51400 70960 34270

488 2495 2855 1665

8.01 15.05 14.44 15.05

0.96 1.91 2.86 1.27

1500

AU 18

y y'' y' 441 ~336

54.7° 10.5 135.3 45.1

9.1 y' y y''

Per S Per D Per T Per m of wall

112.7 225.5 338.2 150.3

88.5 kg/m 177.0 kg/m 265.5 kg/m 118.0 kg/m2

8760 58950 81520 39300

554 2670 3065 1780

8.82 16.17 15.53 16.17

1.01 2.00 2.99 1.33

1500

AU 20

y y'' y' 444 ~336

54.7° 12.0 139.3 46.4

10.0 y' y y''

Per S Per D Per T Per m of wall

123.4 246.9 370.3 164.6

96.9 kg/m 193.8 kg/m 290.7 kg/m 129.2 kg/m2

9380 66660 92010 44440

579 3000 3425 2000

8.72 16.43 15.76 16.43

1.01 2.00 2.99 1.33

1500

AU 21

y y'' y' 445 ~336

54.7° 12.5 140.5 46.8

10.3 y' y y''

Per S Per D Per T Per m of wall

127.0 253.9 380.9 169.3

99.7 kg/m 199.3 kg/m 299.0 kg/m 132.9 kg/m2

9580 69270 95560 46180

588 3110 3545 2075

8.69 16.52 15.84 16.52

1.01 2.00 2.99 1.33

1500

­ S: considered neutral axis y'-y' ­ D, wall: considered neutral axis y-y ­ T: considered neutral axis y"-y"

* One side, excluding inside of interlocks.

U SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile T = Triple pile Sectional area cm2 AU 23

y' y'' y ~374 447 59.6° 13.0 147.1 49.0 9.5 y' y y''

Mass

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

19

Per S Per D Per T Per m of wall

130.1 260.1 390.2 173.4

102.1 kg/m 204.2 kg/m 306.3 kg/m 136.1 kg/m2

9830 76050 104680 50700

579 3405 3840 2270

8.69 17.10 16.38 17.10

1.03 2.04 3.05 1.36

1500

AU 25

y' y'' y ~374 450

59.6° 14.5 150.3 50.1

10.2 y' y y''

Per S Per D Per T Per m of wall

140.6 281.3 422.0 187.5

110.4 kg/m 220.8 kg/m 331.3 kg/m 147.2 kg/m2

10390 84370 115950 56240

601 3750 4215 2500

8.60 17.32 16.58 17.32

1.03 2.04 3.05 1.36

1500

AU 26

y' y'' y ~374 451

59.6° 15.0 151.3 50.4

10.5 y' y y''

Per S Per D Per T Per m of wall

144.2 288.4 432.6 192.2

113.2 kg/m 226.4 kg/m 339.6 kg/m 150.9 kg/m2

10580 87220 119810 58140

608 3870 4340 2580

8.57 17.39 16.64 17.39

1.03 2.04 3.05 1.36

1500

­ S: considered neutral axis y'-y' ­ D, wall: considered neutral axis y-y ­ T: considered neutral axis y"-y"

* One side, excluding inside of interlocks.

U SECTIONS

DELIVERY FORMS AND INTERLOCKING

Section S = Single pile D = Double pile T = Triple pile Sectional area cm2 PU 6

y 226 y' 42.5° 7.5 6.4 y' 68.8 y y'' 22.9

Mass

20

Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

Per S Per D Per T Per m of wall

58.1 116.2 174.3 97.0

45.6 kg/m 91.2 kg/m 136.8 kg/m 76.0 kg/m2

1320 8130 11280 6780

150 720 830 600

4.76 8.37 8.04 8.37

0.72 1.43 2.14 1.19

y''

~335

1200

PU 8

280 y y'

49.0° 81.3 27.1 1200

8.0 8.0 y'

Per S

y y''

69.5 139.0 208.5 116.0

54.5 kg/m 109.1 kg/m 163.6 kg/m 90.9 kg/m

2

2380 13940 19380 11620

134 1000 1160 830

5.85 10.02 9.64 10.02

0.76 1.50 2.25 1.25

y''

~318

Per D Per T Per m of wall

PU 12

360 y' y ~258

50.4° 9.8 100.2 33.4 1200

9.0 y' y y''

Per S Per D Per T Per m of wall

84.2 168.4 252.6 140.0

66.1 kg/m 132.2 kg/m 198.3 kg/m 110.1 kg/m2

4500 25920 36060 21600

370 1440 1690 1200

7.31 12.41 11.95 12.41

0.80 1.59 2.38 1.32

y''

PU 12 10/10

360 y' y ~256

50.4° 100.4 33.5

10.0 10.0 y' y y''

Per S Per D Per T Per m of wall

88.7 177.3 266.0 147.8

69.6 kg/m 139.2 kg/m 208.8 kg/m 116.0 kg/m

2

4600 27100 37670 22580

377 1505 1765 1255

7.20 12.36 11.90 12.36

0.80 1.59 2.38 1.32

y''

1200

PU 16

y' y'' y ~302 380

57.5° 12.0 115.3 38.4 9.0 y' y y''

Per S Per D Per T Per m of wall

95.2 190.3 285.5 159.0

74.7 kg/m 149.4 kg/m 224.1 kg/m 124.5 kg/m2

5600 36490 50510 30400

410 1920 2210 1600

7.67 13.85 13.30 13.85

0.83 1.65 2.48 1.37

1200

PU 20

y' y'' y ~307 430

62.4° 12.4 128.8 42.9

10.0 y' y y''

Per S Per D Per T Per m of wall

107.4 214.8 322.2 179.0

84.3 kg/m 168.6 kg/m 252.9 kg/m 140.5 kg/m

2

8000 51600 71470 43000

529 2400 2770 2000

8.63 15.50 14.89 15.50

0.88 1.75 2.62 1.46

1200

PU 25

y' y'' y 452

68.0° 14.2 142.9 47.6

10.0 y' y

Per S

y''

119.2 238.5 357.8 199.0

93.6 kg/m 187.2 kg/m 280.9 kg/m 156.0 kg/m2

9540 67790 93560 56490

577 3000 3420 2500

8.94 16.86 16.17 16.86

0.92 1.83 2.74 1.52

Per D Per T Per m of wall

~339

1200

PU 32

y' y'' y ~342 452

68.1° 19.5 149.4 49.8

11.0 y' y

Per S

y''

145.4 290.8 436.2 242.0

114.1 kg/m 228.3 kg/m 342.4 kg/m 190.2 kg/m

2

10950 86790 119370 72320

633 3840 4330 3200

8.68 17.28 16.54 17.28

0.92 1.83 2.74 1.52

Per D Per T Per m of wall

1200

U SECTIONS

CHARACTERISTICS

Section S = Single pile D = Double pile T = Triple pile Sectional area cm2 L2S 340 y' 68.1° 12.3 101.5 33.8 1000 L3S 400 y' y y" 65.2° 14.1 115.0 38.3 1000 L4S y' 440 y y" ~ 244 1000 69.5° 15.5 131.0 43.7 10.0 y' y y" 9.0 y' y y" Mass Moment Elastic Radius of Coating of inertia section gyration area* modulus cm4 cm3 cm m2/m

21

Per S Per D Per T Per m of wall

88.8 177.6 266.4 177.0

69.7 kg/m

4440

359 1600 1850 1600

7.07 12.38 11.90 12.38

0.74 1.46 2.20 1.46

y y"

139.4 kg/m 27200 209.1 kg/m 37750 139.4 kg/m2 27200

~ 275

Per S Per D Per T Per m of wall

100.5 201.0 301.5 201.0

78.9 kg/m

6710

485 2000 2330 2000

8.17 14.11 13.58 14.11

0.77 1.52 2.29 1.52

157.8 kg/m 40010 236.7 kg/m 55580 157.8 kg/m 40010

2

~ 232

10.0 y' y y"

Per S Per D Per T Per m of wall

109.8 219.6 329.4 219.0

86.2 kg/m

8650

560 2500 2890 2500

8.88 15.83 15.21 15.83

0.82 1.61 2.42 1.61

172.4 kg/m 55010 258.6 kg/m 76230 172.4 kg/m2 55010

JSP 3 250 y y"

75.2° 13.0 y' 76.7 25.6 800 y' y y"

Per S Per D Per T Per m of wall

76.4 152.8 229.2 191.0

60.0 kg/m

2220

223 1070 1240 1340

5.39 9.38 9.02 9.38

0.61 1.20 1.80 1.50

120.0 kg/m 13440 180.0 kg/m 18660 150.0 kg/m2 16800

~ 270

­ S: considered neutral axis y'-y' ­ D, wall: considered neutral axis y-y ­ T: considered neutral axis y"-y"

* One side, excluding inside of interlocks.

U SECTIONS

DELIVERY FORMS AND INTERLOCKING

22

Larssen Interlock

in accordance with EN 10248

Ever since its creation in 1902 this double-grip interlock has proved its efficiency in numerous applications all over the world.

Delivery Forms

Different forms of interlocking may be specified when ordering.

Form S standard

Form Z on request

S = Single Pile

D = Double Pile

T = Triple pile

U SECTIONS

DELIVERY FORMS AND INTERLOCKING

In general, the interlocks of U-sections delivered as double piles are fixed by crimping according to our standard specification. The allowable shear force per crimping point is 75 kN, at a displacement of up to 5 mm. The corresponding ultimate limit force is 100 kN. Depending on the section and steel grade, higher values can be reached. Please consult our Technical Department for further information.

23

Standard Crimping for U-Sections (except AU)

2 crimping points every 70 cm

Standard Crimping for AU-Sections

< 500

4 crimping points every 1.05 m

100 700

100

100 700

100

100

Smaller crimping paths on request.

Smaller crimping paths on request.

Interlocking Possibilities

AU 14 AU 16 AU 17 AU 18 AU 20 AU 21 AU 23 AU 25 AU 26 PU 12 PU 16 PU 20 PU 25 PU 32 L2S L3S AU 14 AU 16 AU 17 AU 18 AU 20 AU 21 AU 23 AU 25 AU 26 PU 6 PU 8 PU 12 PU 16 PU 20 PU 25 PU 32 L2S L3S L4S JSP 3 b = possible b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b L4S PU 6 PU 8 Profil b b b b b b b b b JSP 3

700

350

700

Crimping points

Crimping points

100 100

350

700

< 500

100

= to be checked

U SECTIONS

CORNER SECTIONS AND CORNER PILES

24

Corner Sections

Special corner sections interlocking with every section of the U-series make it possible to form corner or junction piles without resorting to fabricated piles in most cases.

C 14 Mass ~ 14.4 kg/m

OMEGA 18 Mass ~ 18.0 kg/m

C9 Mass ~ 9.3 kg/m

DELTA 13 Mass ~ 13.1 kg/m

The corner sections are fixed to the main sheet pile in accordance with EN 12063. Different welding specifications on request. The corner sections are threaded and welded with a 200 mm setback from the top of the piles.

Corner Piles

2051

2071

2158

2061

2151

U SECTIONS

JUNCTION PILES AND FABRICATED PILES

Junction Piles

2251 2253

25

2257

2261

The shown configurations can be supplied as double or single piles. Arrangements with C 14, DELTA 13 and OMEGA 18 are also possible. The corner sections are threaded and welded with a 200 mm setback from the top of the piles. On request special arrangements can be designed as fabricated piles.

Fabricated Piles

Narrowed pile Widened pile Transition pile

<b

>b

b

2501

2511

2503

U SECTIONS

ARCS AND CIRCLES

26

Interlock Swing

Each interlock allows a certain rotation. The maximum angle of deviation (the interlock swing) depends on the pile section and length, the soil conditions, and the installation method. In general, the maximum deviation of an interlock is 5°.

max. deviation angle 5°

Beyond this value the piles have to be bent.

2

2

max. bending angle = 25° U piles are bent in the middle of the flange. The maximum bending angle is = 25°. In general, bent piles are delivered as single piles. Double piles upon request.

U SECTIONS

ANCHORAGE

Tie-Back Systems

Most sheet pile retaining walls need supplementary support at the top, in addition to embedment in the soil. Temporary cofferdams generally use walers and struts for cross-bracing inside the excavation. Permanent or large retaining walls are often tied back to an anchor wall installed a certain distance behind the wall. Injection anchors and anchor piles can also be used. The following drawing shows a typical horizontal tie-rod connection for U sheet pile walls. The following components can be seen:

27

6 3

8

1 10

4 5

2

8

1 Plain tie-rod

3 6 10

2 Upset end tie-rod 3 Nut 4 Turnbuckle 5 Coupling sleeve 6 Bearing plate 7 Bearing plate on concrete

6

9

1

4

2

6 3

8 Waling 9 Spacer 10 Supporting console 11 Splicing plate 12 Splicing bolt 13 Fixing bolt 14 15

3 15

14 13 11 12 8 15 7 8 3 14 13 10

}

Fixing plate

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS

28a

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS CHARACTERISTICS Straight web sheet piles are designed to form cylindrical structures, retaining a soil fill. These cylindrical structures are generally closed. The stability of constructions built up in this way, a steel envelope and an internal body of soil is guaranteed by their own weight. Straight web sheet piles are mostly used on projects where rock layers are close to ground level, with deep excavations, or where anchoring would be difficult or even impossible. Straight web sheet pile structures are made as circular cells or diaphragm cells depending on the site characteristics, or the particular requirements of the project. The forces developing in these sheet pile sections are essentially horizontal traction forces, requiring an interlock resistance corresponding to the horizontal force in the web of the pile. finger t

29a

thumb ~ 3.60 _ b

Section

Nominal Web Deviation PeriSteel Mass per Mass width* thickness angle meter of section ft of a per ft2 a single of a single of wall pile single pile pile b t in in ° in in2 lb/ft lb/ft2 19.69 19.69 19.69 19.69 19.69 0.375 0.433 0.472 0.492 0.500 4.5** 4.5** 4.5** 4.5** 4.5** 54.72 54.72 54.72 54.72 54.72 12.65 13.95 14.66 15.07 15.22 43.01 47.46 49.93 51.27 51.81 26.22 28.88 30.52 31.34 31.54

Moment Section Coating of inertia modulus area*** of a single pile in4 4.1 4.5 4.7 4.8 4.9 in3 2.3 3.0 3.1 3.1 3.1 ft2/ft 1.90 1.90 1.90 1.90 1.90

AS 500-9,5 AS 500-11,0 AS 500-12,0 AS 500-12,5 AS 500-12,7

Note: all straight web sections interlock with each other. * The effective width to be taken into account for design purposes (lay-out) is 19.80 in for all AS 500 sheet piles. ** Max. deviation angle 4.0° for pile length > 65.6 ft. *** One side, excluding inside of interlocks.

Interlock Strength

The interlock complies with EN 10248. An interlock strength of 5,000 kN/m (28540 lb/in) for AS 500-12.0 and 5,500 kN/m for AS 500-12.5 and AS 500-12.7 can be obtained (the test procedure used to determinate the interlock strength is that of section B.3 of ENV 1993-5). The required steel grade in these cases is S 355 GP (Grade 50). For verification of the strength of piles, both yielding of the web and failure of the interlock should be considered. The allowable tension force in the pile may be obtained by applying a set of carefully chosen safety factors, for example: i = 2.0 for the interlock resistance and y = 1.5 for yielding of the web. The magnitude of safety factors depends on the calculation method and assumptions, the installation method and the function of the structure. When two different sections are used in the same section of wall, the lowest allowable tension force is to be taken into account.

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS

28

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS CHARACTERISTICS Straight web sheet piles are designed to form cylindrical structures, retaining a soil fill. These cylindrical structures are generally closed. The stability of constructions built up in this way, a steel envelope and an internal body of soil is guaranteed by their own weight. Straight web sheet piles are mostly used on projects where rock layers are close to ground level, where the excavation depth is very great, or where anchoring would be difficult or even impossible. Straight web sheet pile structures are made as circular cells or diaphragm cells depending on the site characteristics, or the particular requirements of the project. The forces developing in these sheet pile sections are essentially horizontal traction forces, requiring an interlock resistance corresponding to the horizontal force in the web of the pile. finger t

29

thumb ~ 92 mm _ b

Section

Nominal Web Deviation PeriSteel Mass per Mass width* thickness angle meter of section m of a per m2 a single of a single of wall pile single pile pile b t 2 mm mm ° cm cm kg/m kg/m2 500 500 500 500 500 9.5 11.0 12.0 12.5 12.7 4.5** 4.5** 4.5** 4.5** 4.5** 139 139 139 139 139 81.6 90.0 94.6 97.2 98.2 64.0 70.6 74.3 76.3 77.1 128 141 149 153 154

Moment Section Coating of inertia modulus area*** of a single pile cm4 170 186 196 201 204 cm3 37 49 51 51 52 m2/m 0.58 0.58 0.58 0.58 0.58

AS 500-9,5 AS 500-11,0 AS 500-12,0 AS 500-12,5 AS 500-12,7

Note: all straight web sections interlock with each other. * The effective width to be taken into account for design purposes (lay-out) is 503 mm for all AS 500 sheet piles. ** Max. deviation angle 4.0° for pile length > 20 m. *** One side, excluding inside of interlocks.

Interlock Strength

The interlock complies with EN 10248. An interlock strength of 5.500 kN/m for AS 500-12.5 and AS 500-12.7, 5.000 kN/m for AS 500-12.0, 3.500 kN/m for AS 500-11.0 and 3.000 kN/m for AS 500-9.5 can be obtained (the test procedure used to determinate the interlock strength is that of section B.3 of ENV 1993-5). The required steel grade in these cases is S 355 GP. For verification of the strength of piles, both yielding of the web and failure of the interlock should be considered. The allowable tension force in the pile may be obtained by applying a set of carefully chosen safety factors, for example: i = 2.0 for the interlock resistance and y = 1.5 for yielding of the web. The magnitude of safety factors depends on the calculation method and assumptions, the installation method and the function of the structure. When two different sections are used in the same section of wall, the lowest allowable tension force is to be taken into account.

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS GEOMETRICAL CHARACTERISTICS

Junction Piles

In general junction piles are assembled by welding in accordance with EN 12063.

2 b _ 2 b _

120° 150 mm

30

b _ 2 BI

b _ 2

b _ 2 BP

b _ 2

Y

The connecting angle should be in the range from 30° to 45°.

Types of Cells

Circular cells with 35° junction piles and one or two connecting arcs.

Diaphragm cells with 120° junction piles.

Bent Piles

If deviation angles exceeding the values given in the table on page 29 have to be attained, piles prebent in the mill may be used.

CI CP

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS GEOMETRICAL CHARACTERISTICS

Equivalent Width and Ratio

The equivalent width we which is required for stability verification, determines the geometry of the chosen cellular construction.

Circular cell with 2 arcs

·

for circular cells

Equivalent width we

Development

31

The equivalent width is defined as: we = Area within 1 cell + Area within 2 (or 1) arc(s) System length x

The ratio shown on tables indicates how economical the chosen circular cell will be.

Circular cell with 1 arc

System length x Area

It is defined as follows: Ratio = System length x

Equivalent width we

Development 1 cell + Development 2 (or 1) arc(s)

System length x

·

for diaphragm cells

r 60° dl we x=r 120° 120° c

The equivalent width we is defined as: we = diaphragm wall length (dl) + 2 · c

Circular Cell Construction

© © ©

3rd phase: Driving

2nd phase:

Threading of piling until cell closure

1st phase:

Installation of the template

c

nce the equivalent width has been determined, the geometry of the cells is to be defined. This can be done with the help of tables or with computer programs. Several solutions are possible for both circular and diaphragm cells with a given equivalent width.

N ra L rm S M S L A x S S M

b/2 b/2

Standard Solution

O

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS CIRCULAR CELLS

dy

b/2

= 35°

32a

we

Description: rm = radius of the main cell = radius of the connecting arcs ra = angle between the main cell and the connecting arc x = system length = positive or negative offset between dy the connecting arcs and the tangent planes of the main cells we = equivalent width

Junction piles with angles between 30° and 45°, as well as = 90°, are possible on request. The following table shows a short selection of solutions for circular cells with 2 arcs and standard junction piles with = 35°.

Nb. of piles per Geometrical values Interlock deviation Cell L M S Arc System N pcs. 150 158 162 166 170 178 182 190 194 202 206 210 218 222 226 234 242 250 254 258 266 270 278 d=2·rm ft ra ft x ft 75.20 80.12 dy in 6.30 7.87 ° 28.80 27.69 26.67 28.93 31.03 30.00 29.03 28.13 30.00 29.12 30.86 30.00 31.62 30.79 32.31 31.50 30.73 30.00 31.40 30.68 30.00 31.30 30.64 ° 167.60 165.38 163.33 167.86 172.07 170.00 168.06 166.25 170.00 168.24 171.71 170.00 173.24 171.58 174.62 173.00 171.46 170.00 172.79 171.36 170.00 172.61 171.28 cell m ° 3.60 3.46 3.33 3.21 3.10 3.00 2.90 2.81 2.73 2.65 2.57 2.50 2.43 2.37 2.31 2.25 2.20 2.14 2.09 2.05 2.00 1.96 1.91 arc a ° 6.45 5.91 5.83 6.00 6.15 5.67 5.60 5.20 5.31 4.95 5.05 5.00 4.81 4.77 4.85 4.55 4.29 4.05 4.11 4.08 3.86 3.92 3.72 2 arcs we ft 44.91 46.40 47.29 50.05 52.75 54.26 55.18 56.67 59.39 60.89 63.61 64.53 67.82 68.72 71.39 72.93 74.45 75.97 78.66 79.58 81.09 83.79 85.31 3.34 3.30 3.27 3.35 3.42 3.38 3.35 3.32 3.39 3.35 3.42 3.39 3.44 3.42 3.48 3.44 3.41 3.38 3.43 3.41 3.39 3.43 3.41 2 arcs ratio Design values

pcs. pcs. pcs. pcs. pcs. 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 33 35 37 37 37 39 41 43 43 45 45 47 47 49 49 51 53 55 55 57 59 59 61 15 15 15 17 19 19 19 19 21 21 23 23 25 25 27 27 27 27 29 29 29 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 25 27 27 27 27 29 29 31 31 33 33 33 35 35 35 37 39 41 41 41 43 43 45

52.53 14.67 54.63 16.01 56.73 16.21 58.83 15.78 60.93 15.39 63.03 16.67 65.12 16.86 67.22 18.21 69.32 17.78

82.78 21.26 82.84 12.99 82.91 87.83 5.12 6.30

90.52 19.69 95.44 20.87 95.51 12.99 6.69 0.00 5.91 6.69 7.87 9.06 1.18

71.42 19.09 100.43 14.17 73.56 18.73 100.46 77.76 19.65 105.41 81.96 19.49 108.20 84.06 20.77 113.12 86.16 22.05 118.04 88.25 23.36 122.97 90.35 22.97 123.00 75.66 18.90 103.18 19.69 79.86 19.85 108.17 13.39

92.45 23.16 125.72 14.57 94.55 24.48 130.64 15.75 96.65 24.11 130.68 98.75 25.39 135.60 7.87 9.06

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS DIAPHRAGM CELLS

Standard Solution

c

dy M 60° r 150

= 120°

we

N

dl Description: r = radius = angle between the arc and the diaphragm we = equivalent width, with we = dl+2 · c dy = arc height dl = diaphragm wall length x = system length

33a

c x=r

The two following tables should be used separately depending on the required number of piles for the diaphragm wall and the arcs.

Geometry diaphragm wall Number of piles N pcs. 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 Diaphragm wall length dl ft 19.13 22.44 25.75 29.04 32.35 35.63 38.94 42.26 45.54 48.85 52.13 55.45 58.76 62.04 65.35 68.64 71.95 75.26 78.54 81.86 85.14 88.45 91.77 Geometry arc Number of piles M pcs. 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 System length x ft 18.27 21.42 24.57 27.72 30.87 34.02 37.17 40.32 43.50 46.65 49.80 52.95 56.10 59.25 62.40 65.55 68.70 71.85 75.00 78.15 81.30 84.45 87.60 Arc height dy ft 2.46 2.85 3.28 3.71 4.13 4.56 4.99 5.41 5.84 6.23 6.66 7.09 7.51 7.94 8.37 8.79 9.22 9.61 10.04 10.47 10.89 11.32 11.75 c ft 1.66 1.94 2.23 2.53 2.82 3.08 3.36 3.66 3.94 4.23 4.51 4.79 5.09 5.38 5.68 5.94 6.23 6.53 6.79 7.09 7.38 7.64 7.94 Interlock deviation arc a ° 5.17 4.41 3.85 3.41 3.06 2.78 2.54 2.34 2.17 2.03 1.90 1.79 1.69 1.60 1.52 1.44 1.38 1.32 1.26 1.21 1.16 1.12 1.08

nce the equivalent width has been determined, the geometry of the cells is to be defined. This can be done with the help of tables or with computer programs. Several solutions are possible for both circular and diaphragm cells with a given equivalent width.

N ra L rm S M S L A x S S M

b/2 b/2

Standard Solution

O

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS CIRCULAR CELLS

dy

b/2

= 35°

32

we

Description: rm = radius of the main cell = radius of the connecting arcs ra = angle between the main cell and the connecting arc x = system length = positive or negative offset between dy the connecting arcs and the tangent planes of the main cells we = equivalent width

Junction piles with angles between 30° and 45°, as well as = 90°, are possible on request. The following table shows a short selection of solutions for circular cells with 2 arcs and standard junction piles with = 35°.

Nb. of piles per Geometrical values Interlock deviation Cell L M S Arc System N pcs. 150 158 162 166 170 178 182 190 194 202 206 210 218 222 226 234 242 250 254 258 266 270 278 d=2·rm m 16.01 16.65 17.29 17.93 18.57 19.21 19.85 20.49 21.13 21.77 22.42 23.06 23.70 24.34 24.98 25.62 26.26 26.90 27.54 28.18 28.82 29.46 30.10 ra m 4.47 4.88 4.94 4.81 4.69 5.08 5.14 5.55 5.42 5.82 5.71 5.76 5.99 6.05 5.94 6.33 6.72 7.12 7.00 7.06 7.46 7.35 7.74 x m 22.92 24.42 25.23 25.25 25.27 26.77 27.59 29.09 29.11 30.61 30.62 31.45 32.13 32.97 32.98 34.48 35.98 37.48 37.49 38.32 39.82 39.83 41.33 dy m 0.16 0.20 0.54 0.33 0.13 0.16 0.50 0.53 0.33 0.36 0.17 0.50 0.00 0.34 0.15 0.17 0.20 0.23 0.03 0.37 0.40 0.20 0.23 ° 28.80 27.69 26.67 28.93 31.03 30.00 29.03 28.13 30.00 29.12 30.86 30.00 31.62 30.79 32.31 31.50 30.73 30.00 31.40 30.68 30.00 31.30 30.64 ° 167.60 165.38 163.33 167.86 172.07 170.00 168.06 166.25 170.00 168.24 171.71 170.00 173.24 171.58 174.62 173.00 171.46 170.00 172.79 171.36 170.00 172.61 171.28 cell m ° 3.60 3.46 3.33 3.21 3.10 3.00 2.90 2.81 2.73 2.65 2.57 2.50 2.43 2.37 2.31 2.25 2.20 2.14 2.09 2.05 2.00 1.96 1.91 arc a ° 6.45 5.91 5.83 6.00 6.15 5.67 5.60 5.20 5.31 4.95 5.05 5.00 4.81 4.77 4.85 4.55 4.29 4.05 4.11 4.08 3.86 3.92 3.72 2 arcs we m 13.69 14.14 14.41 15.25 16.08 16.54 16.82 17.27 18.10 18.56 19.39 19.67 20.67 20.95 21.76 22.23 22.69 23.15 23.98 24.26 24.72 25.54 26.00 3.34 3.30 3.27 3.35 3.42 3.38 3.35 3.32 3.39 3.35 3.42 3.39 3.44 3.42 3.48 3.44 3.41 3.38 3.43 3.41 3.39 3.43 3.41 2 arcs ratio Design values

pcs. pcs. pcs. pcs. pcs. 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 33 35 37 37 37 39 41 43 43 45 45 47 47 49 49 51 53 55 55 57 59 59 61 15 15 15 17 19 19 19 19 21 21 23 23 25 25 27 27 27 27 29 29 29 31 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 25 27 27 27 27 29 29 31 31 33 33 33 35 35 35 37 39 41 41 41 43 43 45

STRAIGHT WEB SECTIONS

STRAIGHT WEB SECTIONS DIAPHRAGM CELLS

Standard Solution

c

dy M 60° r 150

= 120°

we

N

dl Description: r = radius = angle between the arc and the diaphragm we = equivalent width, with we = dl+2 · c dy = arc height dl = diaphragm wall length x = system length

33

c x=r

The two following tables should be used separately depending on the required number of piles for the diaphragm wall and the arcs.

Geometry diaphragm wall Number of piles N pcs. 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 Diaphragm wall length dl m 5.83 6.84 7.85 8.85 9.86 10.86 11.87 12.88 13.88 14.89 15.89 16.90 17.91 18.91 19.92 20.92 21.93 22.94 23.94 24.95 25.95 26.96 27.97 Geometry arc Number of piles M pcs. 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 System length x m 5.57 6.53 7.49 8.45 9.41 10.37 11.33 12.29 13.26 14.22 15.18 16.14 17.10 18.06 19.02 19.98 20.94 21.90 22.86 23.82 24.78 25.74 26.70 Arc height dy m 0.75 0.87 1.00 1.13 1.26 1.39 1.52 1.65 1.78 1.90 2.03 2.16 2.29 2.42 2.55 2.68 2.81 2.93 3.06 3.19 3.32 3.45 3.58 c m 0.51 0.59 0.68 0.77 0.86 0.94 1.03 1.12 1.20 1.29 1.38 1.46 1.55 1.64 1.73 1.81 1.90 1.99 2.07 2.16 2.25 2.33 2.42 Interlock deviation arc a ° 5.17 4.41 3.85 3.41 3.06 2.78 2.54 2.34 2.17 2.03 1.90 1.79 1.69 1.60 1.52 1.44 1.38 1.32 1.26 1.21 1.16 1.12 1.08

BOX PILES

BOX PILES

34a

Sheet piles can easily be built together to form box piles with a wide range of characteristics. These

box piles present all the typical advantages of steel bearing piles. Integrated in a sheet pile wall they provide supplementary bending resistance and may take high vertical loads. They are an excellent construction element for dolphins.

BOX PILES

BOX PILES CHARACTERISTICS

AZ Box Piles

z y y h

z b

35a

Section b h PeriSteel meter section Total section Mass* Moment of inertia Elastic section modulus y-y in3 252.3 274.0 296.9 328.6 356.4 386.3 489.4 522.1 556.8 672.5 710.6 750.0 816.5 859.2 901.9 z-z in3 323.1 351.8 381.7 311.5 339.3 368.3 422.6 450.7 477.2 519.9 551.0 582.8 538.5 567.5 596.8 Min. Coating radius of area** gyration in 8.15 8.15 8.15 10.20 10.20 10.20 11.38 11.38 11.38 12.36 12.36 12.36 12.95 12.95 12.95 ft2/ft 10.79 10.79 10.79 11.19 11.19 11.19 11.71 11.71 11.71 12.24 12.24 12.24 12.50 12.50 12.50

in CAZ 12 CAZ 13 CAZ 14 CAZ 17 CAZ 18 CAZ 19 CAZ 25 CAZ 26 CAZ 28 CAZ 34 CAZ 36 CAZ 38 CAZ 46 CAZ 48 CAZ 50

in

in 137.0 137.4 137.4 141.7 142.1 142.1 148.0 148.4 148.4 154.3 154.7 154.7 157.9 158.3 158.3

in2 45.4 49.6 53.9 47.3 51.6 56.1 63.7 68.2 73.0 80.0 84.8 89.7 92.2 97.3 102.5

in2 645.7 649.6 653.6 759.5 763.4 767.4 858.7 862.7 866.8 929.9 934.0 938.2 903.8 908.0 912.0

lb/ft 154.69 168.87 183.65 160.80 175.38 190.77 217.05 232.30 248.49 272.08 288.61 305.48 314.01 331.28 348.62

y-y in4 3017.8 3287.8

z-z in4 8877.5 9664.5

52.76 23.78 52.76 23.86 52.76 23.94 49.61 29.84 49.61 29.92 49.61 30.00 49.61 33.54 49.61 33.62 49.61 33.70 49.61 36.14 49.61 36.22 49.61 36.30 45.67 37.87 45.67 37.95 45.67 38.03

3574.2 10481.1 4926.1 5355.9 5819.1 8069.5 8781.1 9528.3

8240.6 10817.0 8812.9 11541.9 9421.9 12326.0 12202.1 13275.5 12922.1 14059.4 13666.4 14865.9 15518.7 12675.3 16365.6 13359.6 17216.8 14044.1

* The mass of the welds is not taken into account. ** Outside surface, excluding inside of interlocks.

BOX PILES

BOX PILES

34

Sheet piles can easily be built together to form box piles with a wide range of characteristics. These

box piles present all the typical advantages of steel bearing piles. Integrated in a sheet pile wall they provide supplementary bending resistance and may take high vertical loads. They are an excellent construction element for dolphins.

BOX PILES

BOX PILES CHARACTERISTICS

AZ Box Piles

z y y h

z b

35

Section b h PeriSteel meter section Total section Mass* Moment of inertia Elastic section modulus y-y cm3 4135 4490 4865 5385 5840 6330 8020 8555 9125 11020 11645 12290 13380 14080 14780 z-z cm3 5295 5765 6255 5105 5560 6035 6925 7385 7820 8520 9030 9550 8825 9300 9780 Min. Coating radius of area** gyration cm 20.7 20.7 20.7 25.9 25.9 25.9 28.9 28.9 28.9 31.4 31.4 31.4 32.9 32.9 32.9 m2/m 3.29 3.29 3.29 3.41 3.41 3.41 3.57 3.57 3.57 3.73 3.73 3.73 3.81 3.81 3.81

mm CAZ 12 CAZ 13 CAZ 14 CAZ 17 CAZ 18 CAZ 19 CAZ 25 CAZ 26 CAZ 28 CAZ 34 CAZ 36 CAZ 38 CAZ 46 CAZ 48 CAZ 50 1340 1340 1340 1260 1260 1260 1260 1260 1260 1260 1260 1260 1160 1160 1160

mm 604 606 608 758 760 762 852 854 856 918 920 922 962 964 966

cm 348 349 349 360 361 361 376 377 377 392 393 393 401 402 402

cm2 293 320 348 305 333 362 411 440 471 516 547 579 595 628 661

cm2 4166 4191 4217 4900 4925 4951 5540 5566 5592 5999 6026 6053 5831 5858 5884

kg/m 230 251 273 239 261 284 323 346 370 405 430 455 467 493 519

y-y cm4 125610 136850 148770 205040 222930 242210 343000 366820 392170 507890 537860 568840 645940 681190 716620

z-z cm4 369510 402270 436260 335880 365500 396600 450240 480410 513050 552570 585200 618770 527590 556070 584560

* The mass of the welds is not taken into account. ** Outside surface, excluding inside of interlocks.

BOX PILES

BOX PILES CHARACTERISTICS

U-Box Piles

z y z b y h

36

Section b h Perimeter Steel section cm2 199 220 227 225 247 254 260 281 288 116 139 168 177 190 215 239 291 178 201 220 Total section cm2 2584 2620 2626 2888 2910 2916 3013 3034 3041 1315 1569 1850 1850 2020 2280 2450 2461 1583 1748 1927 Mass* Moment of inertia y-y cm4 53850 62240 64840 73770 83370 86540 94540 104810 108260 11600 19200 34000 35580 46800 65100 84300 108800 36100 51800 69600 z-z cm4 121300 130380 133330 142380 151220 153990 157900 166600 169510 48300 60000 70000 73460 75900 88500 97000 109200 52300 57100 61800 Elastic section modulus y-y cm3 2400 2745 2855 3035 3405 3530 3845 4235 4365 875 1195 1685 1765 2215 2740 3395 4360 1880 2320 2860 z-z cm3 3095 3325 3400 3625 3850 3920 4020 4240 4315 1530 1895 2205 2315 2395 2785 3050 3435 1950 2130 2300 Min. Coating radius of area** gyration cm 16.5 16.8 16.9 18.1 18.4 18.5 19.1 19.3 19.4 10.0 11.8 14.2 14.2 15.7 17.4 18.8 19.3 14.3 16.1 17.8 m2/m 2.04 2.04 2.04 2.14 2.14 2.14 2.19 2.19 2.19 1.55 1.63 1.72 1.72 1.78 1.89 1.97 1.97 1.61 1.67 1.76

mm CAU 14-2 CAU 16-2 CAU 17-2 CAU 18-2 CAU 20-2 CAU 21-2 CAU 23-2 CAU 25-2 CAU 26-2 CU 6-2 CU 8-2 CU 12-2 CU 12 10/10-2 CU 16-2 CU 20-2 CU 25-2 CU 32-2 LP 2 S LP 3 S LP 4 S 785 785 785 786 786 786 786 786 786 632 633 635 635 635 636 636 636 536 537 537

mm 449 454 455 486 489 490 492 495 496 264 321 403 403 423 475 497 499 385 447 487

cm 230 231 231 239 240 240 244 245 245 180 189 198 198 204 214 222 223 189 195 204

kg/m 155.8 172.5 178.1 177.0 193.8 199.3 204.2 220.8 226.4 91.2 109.1 132.2 139.2 149.4 168.6 187.2 228.3 139.4 157.8 172.4

* The mass of the welds is not taken into account. ** Outside surface, excluding inside of interlocks.

BOX PILES

BOX PILES CHARACTERISTICS

U-Box Piles

z y y h

z b

37

Section b h Perimeter Steel section cm2 298 330 340 338 370 381 390 422 433 174 208 253 266 285 322 358 436 266 302 330 Total section cm2 6432 6486 6496 6886 6919 6926 7073 7106 7115 3625 3999 4431 4432 4680 5070 5330 5345 3545 3790 4059 Mass* Moment of inertia y-y cm4 z-z cm4 Elastic section modulus y-y cm3 6490 7235 7675 7825 8570 8810 9235 9995 10245 2685 3480 4555 4790 5315 6095 6990 8585 4260 4770 5385 z-z cm3 6265 6955 7180 7205 7900 8125 8340 9035 9260 2795 3435 4325 4555 4940 5705 6460 7935 3920 4590 5185 Min. Coating radius of area** gyration cm 31.7 31.8 31.8 32.8 32.9 32.9 33.3 33.3 33.3 23.9 25.0 26.2 26.2 27.0 28.1 28.9 29.0 23.4 24.3 25.4 m2/m 3.03 3.03 3.03 3.17 3.17 3.17 3.24 3.24 3.24 2.29 2.41 2.54 2.54 2.64 2.80 2.91 2.92 2.38 2.47 2.61

mm CAU 14-3 CAU 16-3 CAU 17-3 CAU 18-3 CAU 20-3 CAU 21-3 CAU 23-3 CAU 25-3 CAU 26-3 CU 6-3 CU 8-3 CU 12-3 CU 12 10/10-3 CU 16-3 CU 20-3 CU 25-3 CU 32-3 LT2 S LT3 S LT4 S 955 960 960 1009 1012 1013 1036 1038 1039 715 757 800 800 839 888 924 926 744 776 817

mm 907 910 910 927 928 929 930 931 932 682 711 755 755 765 791 807 809 661 692 717

cm 341 342 343 355 356 359 361 364 364 267 279 293 293 302 318 329 331 280 289 303

kg/m 233.7 258.7 267.2 265.5 290.7 299.0 306.3 331.3 339.6 136.8 163.6 198.3 208.8 224.1 252.9 280.9 342.4 209.1 236.7 258.6

299200 333640 344760 363690 399780 411460 431940 469030 481240 99900 130100 173100 182100 207200 253400 298500 367400 145800 178100 211800

* The mass of the welds is not taken into account. ** Outside surface, excluding inside of interlocks.

BOX PILES

BOX PILES CHARACTERISTICS

U-Box Piles

z y y h

z b

38

Section b h Perimeter Steel section cm2 397 440 454 451 494 508 520 563 577 232 278 337 355 381 430 477 582 355 402 439 Total section cm2 11122 11193 11206 11728 11771 11783 11977 12020 12033 6480 6978 7565 7565 7890 8410 8760 8782 5903 6231 6590 Mass* Moment of inertia y-y cm4 z-z cm4 689860 770370 796520 826550 910010 937100 979870 1064910 1093300 234900 300200 394000 414830 468400 562900 656800 811100 325000 391700 458900 Elastic section modulus y-y cm3 11305 12575 12990 13140 14430 14855 15510 16820 17250 5315 6385 7690 8095 8970 10265 11745 14480 7160 8080 9090 z-z cm3 Min. Coating radius of area** gyration cm 41.7 41.8 41.9 42.8 42.9 43.0 43.4 43.5 43.5 31.8 32.9 34.2 34.2 35.1 36.2 37.1 37.3 30.2 31.2 32.3 m2/m 4.02 4.02 4.02 4.20 4.20 4.20 4.30 4.30 4.30 3.04 3.19 3.36 3.36 3.50 3.70 3.86 3.87 3.14 3.27 3.45

mm CAU 14-4 CAU 16-4 CAU 17-4 CAU 18-4 CAU 20-4 CAU 21-4 CAU 23-4 CAU 25-4 CAU 26-4 CU 6-4 CU 8-4 CU 12-4 CU 16-4 CU 20-4 CU 25-4 CU 32-4 LQ 2 S LQ 3 S LQ 4 S 1220 1225 1226 1258 1261 1262 1263 1266 1267 884 941 1025 1044 1096 1118 1120 908 969 1009

mm 1220 1225 1226 1258 1261 1262 1263 1266 1267 884 941 1025 1025 1044 1096 1118 1120 908 969 1009

cm 452 454 454 471 472 473 481 482 483 355 370 388 388 401 421 437 440 371 383 401

kg/m 311.6 345.0 356.2 354.0 387.6 398.6 408.4 441.6 452.8 182.4 218.2 264.4 278.4 298.8 337.2 374.4 456.6 278.8 315.6 344.8

CU 12 10/10-4 1025

* The mass of the welds is not taken into account. ** Outside surface, excluding inside of interlocks.

SPECIAL COMBINATIONS

SPECIAL COMBINATIONS

CHARACTERISTICS

AZ Jagged Wall

h

b

39a

Threaded in a reverse position AZ sections may form arrangements for special applications. For sealing screens this arrangement represents a most economical solution (reduced height, reliable thickness, low driving resistance).

Section b in AZ 12 AZ 13 AZ 14 AZ 17 AZ 18 AZ 19 AZ 25 AZ 26 AZ 28 AZ 34 AZ 36 AZ 38 AZ 46 AZ 48 AZ 50 AZ 13 10/10 AZ 18 10/10 AZ 26 + 0.5

Dimensions h in 7.28 7.32 7.36 8.78 8.86 8.90 9.33 9.37 9.41 10.31 10.35 10.39 12.13 12.20 12.28 7.36 8.86 9.37

Sectional area in2/ft 5.53 6.05 6.57 5.76 6.28 6.80 7.46 7.98 8.55 9.21 9.78 10.30 11.01 11.57 12.19 6.28 6.57 8.27

Mass lb/ft2 18.86 20.54 22.35 19.62 21.34 23.23 25.46 27.22 29.04 31.42 33.24 35.11 37.46 39.45 41.43 21.44 22.32 28.14

Moment of interia in4/ft 18.6 20.8 22.9 28.1 31.3 34.6 44.5 48.3 52.1 71.3 76.0 80.8 121.2 127.8 134.5 21.8 33.0 50.2

Elastic section modulus in3/ft 5.1 5.7 6.2 6.4 7.1 7.8 9.6 10.3 11.1 13.9 14.7 15.5 19.9 20.9 21.9 6.0 7.4 10.7

Coating area* ft2/ft2 1.14 1.14 1.14 1.19 1.19 1.19 1.21 1.21 1.21 1.23 1.23 1.23 1.30 1.30 1.30 1.14 1.19 1.21

28.27 28.27 28.27 28.11 28.11 28.11 28.98 28.98 28.98 29.65 29.65 29.65 28.54 28.54 28.54 28.27 28.11 28.98

For minimum steel thicknesses of 0.394 in (10 mm):

For minimum steel thicknesses of 0.5 in (12.7 mm): * On both sides, excluding inside of interlocks.

SPECIAL COMBINATIONS

SPECIAL COMBINATIONS

CHARACTERISTICS

AZ Jagged Wall

h

39

b

Threaded in a reverse position AZ sections may form arrangements for special applications. For sealing screens this arrangement represents a most economical solution (reduced height, reliable thickness, low driving resistance).

Section b mm AZ 12 AZ 13 AZ 14 AZ 17 AZ 18 AZ 19 AZ 25 AZ 26 AZ 28 AZ 34 AZ 36 AZ 38 AZ 46 AZ 48 AZ 50 AZ 13 10/10 AZ 18 10/10 AZ 26 + 0.5 718 718 718 714 714 714 736 736 736 753 753 753 725 725 725 718 714 736

Dimensions h mm 185 186 187 223 225 226 237 238 239 262 263 264 308 310 312 187 225 238

Sectional area cm2/m 117 128 139 122 133 144 158 169 181 195 207 218 233 245 258 133 139 175

Mass kg/m2 92.1 100.3 109.1 95.8 104.2 113.4 124.3 132.9 141.8 153.4 162.3 171.4 182.9 192.6 202.3 104.7 109.0 137.4

Moment of interia cm4/m 2540 2840 3130 3840 4280 4720 6070 6590 7110 9730 10380 11040 16550 17450 18370 2980 4500 6850

Elastic section modulus cm3/m 275 305 335 345 380 420 515 555 595 745 790 835 1070 1125 1180 320 400 575

Coating area* m2/m2 1.14 1.14 1.14 1.19 1.19 1.19 1.21 1.21 1.21 1.23 1.23 1.23 1.30 1.30 1.30 1.14 1.19 1.21

For minimum steel thicknesses of 10 mm:

For minimum steel thicknesses of 12.7 mm: * On both sides, excluding inside of interlocks.

SPECIAL COMBINATIONS

SPECIAL COMBINATIONS

CHARACTERISTICS

U Jagged Wall

An arrangement of U sheet piles into a jagged wall offers economic solutions where high inertia and section modulus are needed. Final choice of section has to include drivability criteria. The statical values given on the next page assume the solidarization of the driving element, i.e. double pile. (see picture below) Generally the OMEGA 18 section is threaded and welded at the mill. The OMEGA 18 section may either be tack welded for handling reasons to the double pile, then its contribution to the section modulus of the jagged wall has to be disregarded, or it is welded with an accordingly designed weld, then it fully contributes to the section modulus. See different columns in the table on the next page. For walls with an anchorage or strut system, stiffeners have to be provided at the support levels.

40

90°

Driving element

h

90°

b

OMEGA 18

The moment of inertia and section moduli values given assume correct shear force transfer across the interlock on the neutral axis

SPECIAL COMBINATIONS

SPECIAL COMBINATIONS

CHARACTERISTICS

Section Width b mm AU 14 AU 16 AU 17 AU 18 AU 20 AU 21 AU 23 AU 25 AU 26 PU 6 PU 8 PU 12 PU 12 10/10 PU 16 PU 20 PU 25 PU 32 L2S L3S L4S 1135 1135 1135 1135 1135 1135 1135 1135 1135 923 923 923 923 923 923 923 923 781 781 781 Height h mm 1115 1115 1115 1136 1139 1139 1171 1173 1174 903 903 903 903 929 971 1010 1011 815 827 865 Mass Moment of inertia without OMEGA 18 cm4/m 275830 307000 317400 329320 362510 373310 390650 424510 435820 113200 144600 189000 198850 225100 270600 316500 389300 179700 216600 254700 Elastic section modulus Static moment kg/m2 153.2 167.9 172.8 171.9 186.7 191.5 195.8 210.5 215.4 118.5 137.8 162.8 170.4 181.5 202.3 222.5 267.0 201.6 225.1 243.9 with without with without with OMEGA 18 OMEGA 18 OMEGA 18 OMEGA 18 OMEGA 18 cm4/m cm3/m cm3/m cm3/m cm3/m 334350 365520 375920 387840 421030 431820 449160 483020 494340 152100 184500 229900 245250 266600 312700 359000 432400 213700 251000 289500 4945 5505 5690 5795 6365 6555 6675 7240 7425 2510 3200 4185 4405 4845 5575 6265 7705 4405 5235 5890 5995 6555 6740 6825 7395 7580 7675 8235 8425 3370 4085 5090 5430 5740 6440 7105 8560 5240 6070 6695 6160 6870 7110 7180 7920 8160 8470 9215 9465 3290 4070 5175 5450 6065 7065 8105 10025 5665 6655 7595 7250 7960 8195 8270 9005 9250 9560 10300 10550 4365 5140 6245 6525 7140 8140 9175 11095 6725 7720 8655

41

COMBINED WALLS

COMBINED WALLS

42

heet piles can easily be combined to form special arrangements for construction of walls with great resistance to bending: ­ sheet pile walls reinforced with integrated box piles, ­ combined walls like box piles / sheet piles, wide flange beams / sheet-piles, tubes / sheet piles. The primary piles in the combined walls very often also have the function of bearing piles taking important vertical loads, as occurs for instance in very high quay walls.

S

COMBINED WALLS

COMBINED WALLS CHARACTERISTICS

Determination of the equivalent section modulus

For a combined wall, the equivalent elastic section modulus per linear meter of wall is defined on the basis of the fact that the deflections of the primary piles and intermediate sheet piles have to be the same, leading to: moment of inertia (sheet piles) moment of inertia (primary pile) b

1+ equivalent el. section modulus = el. section modulus (primary pile)

Combinations

43a

AZ Box Piles ­ AZ Sheet Piles

b

Section

Dimension

b in

Mass l of intermediates = 100% 60% l box piles lb/ft2 lb/ft2

Moment of inertia

Elastic section modulus in3/ft

in4/ft

CAZ 13 / AZ 13 CAZ 18 / AZ 13 CAZ 18 / AZ 18 CAZ 26 / AZ 13 CAZ 26 / AZ 18 CAZ 36 / AZ 13 CAZ 36 / AZ 18 CAZ 48 / AZ 13 CAZ 48 / AZ 18

105.51 102.36 99.21 102.36 99.21 102.36 99.21 98.43 95.28

30.11 31.95 33.38 38.51 40.14 45.26 47.11 52.23 54.28

25.81 27.45 28.47 34.00 35.43 40.76 42.19 47.52 49.36

446.0 702.3 773.0 1107.5 1191.2 1589.3 1688.2 2072.7 2191.7

37.2 46.7 51.4 65.7 70.6 87.4 92.8 108.8 115.1

COMBINED WALLS

COMBINED WALLS CHARACTERISTICS

Determination of the equivalent section modulus

For a combined wall, the equivalent elastic section modulus per linear meter of wall is defined on the basis of the fact that the deflections of the primary piles and intermediate sheet piles have to be the same, leading to: moment of inertia (sheet piles) moment of inertia (primary pile) b

1+ equivalent el. section modulus = el. section modulus (primary pile)

Combinations

AZ Box Piles ­ AZ Sheet Piles

43

b

Section

Dimension

b mm

Mass l of intermediates = 100% 60% l box piles kg/m2 kg/m2

Moment of inertia

Elastic section modulus cm3/m

cm4/m

CAZ 13 / AZ 13 CAZ 18 / AZ 13 CAZ 18 / AZ 18 CAZ 26 / AZ 13 CAZ 26 / AZ 18 CAZ 36 / AZ 13 CAZ 36 / AZ 18 CAZ 48 / AZ 13 CAZ 48 / AZ 18

2680 2600 2520 2600 2520 2600 2520 2500 2420

147 156 163 188 196 221 230 255 265

126 134 139 166 173 199 206 232 241

60910 95900 105560 151240 162660 217030 230540 283040 299290

2000 2510 2765 3530 3795 4700 4990 5850 6190

COMBINED WALLS

COMBINED WALLS CHARACTERISTICS

Combinations

U Box Piles ­ U Sheet Piles

Type of reinforcement The reinforcement may be: 1. Heightwise: ­ full height: reinforcing box piles ­ partial height: forming sheet piles with inertia change by welding specially prepared shorter piles onto them. 2. Lengthwise: ­ total length: reinforcement 1/1 ­ partial length: reinforcement 1/2, 1/3, 1/4. For other combinations (e.g. 2/4) please contact our Technical Department.

1/1

1/2

1/3

1/4

44

2/4

Section Mass kg/m2 AU 14 AU 16 AU 17 AU 18 AU 20 AU 21 AU 23 AU 25 AU 26 PU 12 PU 16 PU 20 PU 25 PU 32 L2S L3S L4S 207.8 230.0 237.5 236.0 258.4 265.7 272.2 294.4 301.9 220.3 249.0 281.0 312.0 380.5 278.8 315.6 344.8

1/1 Moment Elastic of inertia section modulus cm4/m cm3/m 71800 82990 86450 98360 111160 115390 126050 139750 144350 56670 59300 78000 108550 140560 181330 72200 103600 139200 3200 3660 3805 4045 4545 4705 5125 5645 5820 2810 2945 3690 4570 5655 7270 3755 4640 5725 Mass kg/m2 155.8 172.5 178.1 177.0 193.8 199.3 204.2 220.8 226.4 165.2 174.0 186.8 210.8 234.0 285.3 209.1 236.7 258.6

1/2 Moment Elastic of inertia section modulus cm4/m cm3/m 40290 46230 48070 55020 61830 64080 69580 76800 79230 32080 33480 43670 60940 78230 99790 40540 58510 78250 1795 2035 2115 2260 2525 2615 2830 3105 3195 1590 1660 2065 2565 3150 4000 2110 2620 3215 Mass kg/m2 138.5 153.3 158.3 157.3 172.3 177.2 181.5 196.3 201.2 146.9 154.6 166.0 187.4 208.0 253.6 185.9 210.4 229.8

1/3 Moment Elastic of inertia section modulus cm4/m cm3/m 43070 49560 51660 58990 66680 69250 75820 84080 86880 33290 34820 46270 64850 84510 108660 42200 61210 83070 1920 2185 2275 2425 2725 2825 3080 3395 3505 1650 1730 2190 2730 3400 4355 2195 2740 3415 Mass kg/m2 129.8 143.7 148.4 147.5 161.5 166.1 170.2 184.0 188.7 137.7 145.0 155.6 175.6 194.9 237.8 174.3 197.2 215.5

1/4 Moment Elastic of inertia section modulus cm4/m cm3/m 37820 43440 45270 51760 58460 60700 66410 73590 76020 29190 30520 40550 56910 74120 95070 36930 53690 72920 1685 1915 1990 2130 2390 2475 2700 2975 3065 1450 1515 1915 2395 2985 3810 1920 2405 3000

PU 12 10/10 232.0

COMBINED WALLS

COMBINED WALLS HZ/AZ SYSTEM

45

he HZ/AZ wall is a combined system incorporating : ­ HZ king piles as structural supports, ­ AZ sheet piles as intermediary elements, ­ special connectors. Systemwise assembly of these basic elements yields a full range of standard solutions. All combinations are based on the same principle: structural supports comprising one or more HZ primary pile sections alternating with intermediary double AZ sheet pile sections. Structurally, the HZ primary piles fulfill two different functions : ­ as retaining members, they resist horizontal loads resulting from earth and hydrostatic pressures, ­ as bearing piles, they transfer vertical loads into the ground. The intermediary sheet piles have only an earth-retaining and load-transfer function and they may be shorter than the HZ primary piles. The range of sectional combinations of the HZ System is characterized by loadings which can not be covered by conventional sheet piling. Depending on the structural combination and steelgrade adopted, bending moments up to 9000 kNm/m can be safely resisted. Concurrently, an excellent section-modulus-to-weight ratio ensures economical design. The outstanding feature of this combination is the extensive range of possible combinations using the entire AZ sheet pile offer. See also our special HZ/AZ System catalogue.

T

COMBINED WALLS

HZ/AZ SYSTEM CHARACTERISTICS

Dimensions

HZ/AZ System

Single Elements

Section

Sec- Mass Moment Elastic Peritional of section meter area inertia modulus s in r in in2 lb/ft y-y in4 3023.1 3393.3 3815.2 4196.7 y-y in3 ft2/ft 9.88 9.91 9.94 9.97

Interlocking section

h in HZ t r h y s HZ 775 A HZ 775 B b HZ 775 C HZ 775 D HZ 975 A HZ 975 B HZ 975 C HZ 975 D RH z y zs b RZU z RZU 16 y z b RZD y z b z RZD 16 y h RZD 18 2.65 2.43 y h RZU 18 2.43 2.65 y h RH 16 RH 20 2.43 2.65 y HZ 575 A HZ 575 B HZ 575 C HZ 575 D

b in

t in

22.64 18.11 0.551 0.433 0.79 31.08 105.77 22.80 18.11 0.630 0.433 0.79 33.93 115.44 22.95 18.15 0.709 0.472 0.79 37.73 128.41 23.11 18.15 0.787 0.472 0.79 40.59 138.09

267.0 297.8 332.6 363.1

RH16-RZ16 RH16-RZ16 RH16-RZ16 RH20-RZ18

30.51 18.11 0.669 0.492 0.79 39.97 136.01 30.67 18.11 0.748 0.492 0.79 42.83 145.75 30.83 18.17 0.827 0.551 0.79 47.55 161.81 30.98 18.17 0.906 0.551 0.79 50.42 171.55

6728.7 7398.0 8232.9 8918.6

441.2 482.4 534.3 575.8 596.8 649.0 722.8 775.6

11.12 11.15 11.19 11.22 12.43 12.43 12.50 12.50

RH16-RZ16 RH16-RZ16 RH20-RZ18 RH20-RZ18 RH16-RZ16 RH16-RZ16 RH20-RZ18 RH20-RZ18

46a

38.39 18.11 0.669 0.551 0.79 46.04 156.64 11452.2 38.54 18.11 0.748 0.551 0.79 48.89 166.38 12509.8 38.70 18.19 0.827 0.630 0.79 54.85 186.67 13986.6 38.86 18.19 0.906 0.630 0.79 57.72 196.42 15066.6

2.69 3.12

­ ­

0.480 0.559

­ ­

3.16 3.95

10.75 13.44

2.0 3.0

1.6 2.1

­ ­

­ ­

3.13 3.31

­ ­

­ ­

­ ­

3.19 3.55

10.83 12.03

1.7 2.3

1.1 1.4

­ ­

­ ­

3.13 3.31

­ ­

­ ­

­ ­

3.19 3.55

10.89 12.13

1.4 1.9

1.1 1.4

­ ­

­ ­

All the components of HZ/AZ System available in ASTM A690 steel grade.

COMBINED WALLS

HZ/AZ SYSTEM CHARACTERISTICS

Dimension h Properties per ft of wall Sectional area in2/ft 11.38 11.87 12.51 13.13 12.90 13.38 14.31 14.80 13.93 14.41 15.56 16.04 14.00 14.76 15.78 16.86 16.39 17.15 18.73 19.50 18.01 18.78 20.69 21.46 Profil Mass*** Coating area Waterside ft2/ft 7.65 7.65 7.65 7.70 7.65 7.65 7.70 7.70 7.65 7.65 7.70 7.70 9.41 9.41 9.41 9.48 9.40 9.40 9.47 9.47 9.40 9.40 9.47 9.47 Section Combination HZ ... -12 / AZ 18 HZ 575 A HZ 575 B HZ 575 C HZ 575 D

h

in 22.64 22.80 22.95 23.11 30.51 30.67 30.83 30.98 38.39 38.54 38.70 38.86 22.64 22.80 22.95 23.11 30.51 30.67 30.83 30.98 38.39 38.54 38.70 38.86 Dimension b h

Moment of Elastic* Elastic** inertia section section l AZ = modulus modulus 60 % l HZ in4/ft in3/ft in3/ft lb/ft2 806.3 871.8 947.2 1023.9 1537.8 1654.9 1820.0 1939.2 2474.0 2658.7 2948.3 3136.1 1161.4 1262.9 1379.9 1519.4 2327.4 2510.0 2801.4 2987.5 3819.9 4108.5 4613.1 4906.9 75.1 80.0 85.1 91.6 106.4 113.4 123.9 130.9 136.5 145.4 160.1 169.2 85.3 92.9 101.5 110.9 132.4 143.0 158.8 169.6 176.8 190.1 212.8 226.4 60.9 66.1 72.2 77.3 88.6 95.6 104.7 111.7 114.9 123.8 136.9 145.7 94.6 102.8 112.2 122.6 142.8 153.8 170.9 181.9 187.7 201.6 225.7 239.7 30.44 32.10 34.30 36.21 35.60 37.25 40.25 41.91 39.11 40.76 44.48 46.14 39.94 42.54 46.02 49.27 48.07 50.68 55.64 58.25 53.61 56.21 62.31 64.93 Mass Elastic* Elastic** section section modulus modulus in3/ft in3/ft 187.8 206.6 226.5 251.4 308.7 334.5 373.0 399.3 418.8 451.6 504.6 537.8 176.2 195.7 217.6 236.9 290.4 316.8 348.5 374.6 394.0 427.2 472.1 505.1

l AZ = l HZ lb/ft2 38.73 40.39 42.59 44.67 43.89 45.54 48.71 50.37 47.40 49.05 52.94 54.60 47.63 50.24 53.71 57.38 55.76 58.37 63.75 66.37 61.30 63.91 70.43 73.04

HZ 775 A

y 70.47" y

HZ 775 B HZ 775 C HZ 775 D HZ 975 A

* **

Referring to outside of connector Referring to outside of AZ-flange

HZ 975 B HZ 975 C HZ 975 D HZ 575 A HZ 575 B HZ 575 C HZ 575 D HZ 775 A

*** Length of connector = Length of AZ

47a

Combination HZ ... -24 / AZ 18

h

y 89.37"

y

HZ 775 B HZ 775 C HZ 775 D HZ 975 A

* **

Referring to outside of connector Referring to outside of HZ-flange

HZ 975 B HZ 975 C HZ 975 D Profil

*** Length of connector = Length of AZ

Properties per ft of wall Sectional area in2/ft 21.97 23.80 26.18 28.40 27.68 29.51 32.77 34.59 31.56 33.39 37.34 39.16 Moment of inertia in4/ft 2179.3 2420.5 2691.1 2977.6 4755.9 5190.0 5778.3 6218.4 8047.3 8732.8 9742.2 10434.4

Coating area Waterside ft2/ft 1.75 1.75 1.75 1.78 1.75 1.75 1.77 1.77 1.75 1.75 1.77 1.77

Section Combination C1 HZ 575 A HZ 575 B HZ 575 C Driving Direction

b y y

in 18.70 18.70 18.74 18.82 18.70 18.70 18.86 18.86 18.70 18.70 18.90 18.90

in 22.64 22.80 22.95 23.11 30.51 30.67 30.83 30.98 38.39 38.54 38.70 38.86

lb/ft2 74.75 80.98 89.10 96.65 94.19 100.41 111.54 117.73 107.42 113.65 127.09 133.28

HZ 575 D HZ 775 A HZ 775 B HZ 775 C HZ 775 D HZ 975 A HZ 975 B

h

* **

Referring to outside of connector Referring to outside of HZ-flange

HZ 975 C HZ 975 D

COMBINED WALLS

HZ/AZ SYSTEM CHARACTERISTICS

Dimensions

HZ/AZ System

Single Elements

Section

Sec- Mass Moment Elastic Peritional of section meter area inertia modulus kg/m y-y cm4 y-y cm3 m2/m

Interlocking section

h mm HZ t r h y s y

b mm

t s r mm mm mm cm2

HZ 575 A 575.0 460.0 14.0 11.0 20 HZ 575 B 579.0 460.0 16.0 11.0 20 HZ 575 C 583.0 461.0 18.0 12.0 20 HZ 575 D 587.0 461.0 20.0 12.0 20

200.5 157.4 125830 218.9 171.8 141240 243.4 191.1 158800 261.9 205.5 174680

4375 4880 5450 5950

3.01 RH16-RZ16 3.02 RH16-RZ16 3.03 RH16-RZ16 3.04 RH20-RZ18

HZ 775 A 775.0 460.0 17.0 12.5 20 HZ 775 B 779.0 460.0 19.0 12.5 20 b HZ 775 C 783.0 461.5 21.0 14.0 20 HZ 775 D 787.0 461.5 23.0 14.0 20 HZ 975 A 975.0 460.0 17.0 14.0 20 HZ 975 B 979.0 460.0 19.0 14.0 20 HZ 975 C 983.0 462.0 21.0 16.0 20 HZ 975 D 987.0 462.0 23.0 16.0 20 RH z y zs b RZU z RZU 16 y z b RZD y z b z RZD 16 y h RZD 18 67.3 84.0 ­ ­ ­ 61.8 79.5 ­ ­ ­ y h RZU 18 61.8 67.3 79.5 84.0 ­ ­ ­ ­ ­ ­ y h RH 16 RH 20 61.8 67.3 68.2 79.2 ­ ­ 12.2 14.2 ­ ­

257.9 202.4 280070 276.3 216.9 307930 306.8 240.8 342680 325.3 255.3 371220 297.0 233.1 476680 315.4 247.6 520700 353.9 277.8 582170 372.4 292.3 627120

7230 7905 8755 9435 9780 10640 11845 12710

3.39 RH16-RZ16 3.40 RH16-RZ16 3.41 RH20-RZ18 3.42 RH20-RZ18 3.79 RH16-RZ16 3.79 RH16-RZ16 3.81 RH20-RZ18 3.81 RH20-RZ18

46

20.4 25.5

16.0 20.0

82.7 122.8

25.5 33.7

­ ­

­ ­

20.6 16.12 22.9 17.90

69.6 94.6

18.4 22.8

­ ­

­ ­

20.6 16.21 22.9 18.05

57.8 79.5

18.5 22.4

­ ­

­ ­

All the components of HZ/AZ System available in ASTM A690 steel grade.

COMBINED WALLS

HZ/AZ SYSTEM CHARACTERISTICS

Dimension h Properties per meter of wall Sectional area cm2/m 240.9 251.2 264.9 277.8 273.0 283.3 303.0 313.3 294.8 305.1 329.3 339.6 296.2 312.4 334.1 356.9 346.8 363.0 396.5 412.8 381.3 397.5 438.0 454.3 Profil Mass*** Coating area Waterside m2/m 2.332 2.332 2.332 2.348 2.332 2.332 2.346 2.346 2.332 2.332 2.347 2.347 2.867 2.867 2.867 2.889 2.866 2.866 2.886 2.886 2.865 2.865 2.888 2.888 Section Combination HZ ... -12 / AZ 18 HZ 575 A HZ 575 B HZ 575 C HZ 575 D

h

mm 575.0 579.0 583.0 587.0 775.0 779.0 783.0 787.0 975.0 979.0 983.0 987.0 575.0 579.0 583.0 587.0 775.0 779.0 783.0 787.0 975.0 979.0 983.0 987.0 Dimension b h

Moment of Elastic* Elastic** inertia section section l AZ = modulus modulus 60 % l HZ cm4/m cm3/m cm3/m kg/m2 110100 119050 129350 139820 210000 225980 248530 264810 337840 363060 402610 428250 158590 172460 188440 207480 317820 342750 382550 407960 521630 561040 629940 670070 4040 4300 4575 4925 5720 6095 6660 7040 7340 7815 8610 9095 4585 4995 5455 5965 7120 7690 8540 9120 9505 10220 11440 12170 3275 3555 3880 4155 4765 5140 5630 6005 6180 6655 7360 7835 5085 5525 6030 6590 7675 8270 9190 9780 10090 10840 12135 12885 149 157 167 177 174 182 197 205 191 199 217 225 195 208 225 241 235 247 272 284 262 274 304 317 Mass

l AZ = l HZ kg/m2 189 197 208 218 214 222 238 246 231 240 258 267 233 245 262 280 272 285 311 324 299 312 344 357

HZ 775 A

y 1790 y

HZ 775 B HZ 775 C HZ 775 D HZ 975 A

* **

Referring to outside of connector Referring to outside of HZ-flange

HZ 975 B HZ 975 C HZ 975 D HZ 575 A HZ 575 B HZ 575 C HZ 575 D HZ 775 A

*** Length of connector = Length of AZ

47

Combination HZ ... -24 / AZ 18

h

y 2270

y

HZ 775 B HZ 775 C HZ 775 D HZ 975 A

* **

Referring to outside of connector Referring to outside of HZ-flange

HZ 975 B HZ 975 C HZ 975 D Profil

*** Length of connector = Length of AZ

Properties per meter of wall Sectional area cm2/m 464.9 503.7 554.2 601.1 585.8 624.5 693.7 732.3 668.1 706.8 790.4 828.9 Moment of Elastic* Elastic** inertia section section modulus modulus cm4/m cm3/m cm3/m 297600 330530 367480 406610 649450 708720 789060 849160 1098910 1192510 1330350 1424880 10095 11105 12175 13515 16595 17985 20055 21470 22515 24280 27130 28915 9475 10520 11700 12735 15615 17030 18735 20140 21185 22970 25380 27155

Coating area Waterside m2/m 0.534 0.534 0.534 0.541 0.534 0.534 0.540 0.540 0.534 0.534 0.541 0.541

Section Combination C1 HZ 575 A HZ 575 B HZ 575 C Driving Direction

b y y

mm 475.0 475.0 476.0 478.0 475.0 475.0 479.0 479.0 475.0 475.0 480.0 480.0

mm 575.0 579.0 583.0 587.0 775.0 779.0 783.0 787.0 975.0 979.0 983.0 987.0

kg/m2 365 395 435 472 460 490 545 575 524 555 620 651

HZ 575 D HZ 775 A HZ 775 B HZ 775 C HZ 775 D HZ 975 A HZ 975 B

h

* **

Referring to outside of connector Referring to outside of HZ-flange

HZ 975 C HZ 975 D

DRIVING ACCESSORIES

DRIVING ACCESSORIES

48

DRIVING ACCESSORIES

DRIVING ACCESSORIES DRIVING CAPS ­ CHARACTERISTICS

driving cap is a very important accessory, providing good energy transfer between the hammer and the sheet pile section, thus preventing damage to the pile. Impact hammers, especially diesel hammers need a special driving cap. It is generally made of cast steel, with an arrangement of guiding grooves for the different sheet pile sections on its lower side. A dolly is fitted into a recess on the top of the driving cap. Dollies are normally made of wooden or plastic components or a combination of several different elements. Each driving cap generally fits several sheet pile sections, thus reducing the number required for a whole sheet pile range.

A

Sheet Pile Sections and Corresponding Driving Caps

Sections L2S­L3S­L4S L2S­L3S­L4S L2S­L3S­L4S PU 6-8-12-16-20-25-32 PU 6-8 PU 12-16 PU 12 PU 16-20-25-32 AU 14-16-17 AU 18-20-21-23-25-26 CU 8-2 / CU 12-2 / CU 16-2 CU 6-2 / CU 20-2 AZ 12-13-14 AZ 17-18-19-25-26-28 AZ 34-36-38 AZ 46-48-50 AS 500 AS 500 singles doubles box piles singles doubles doubles doubles doubles doubles doubles box piles box piles doubles doubles doubles doubles singles doubles Driving Caps LS 2/3/4 LD 2/3/4 CLP 500 US-B UD 3-B and UD 3 UD 1 CD 600 requires slight modification. UD 2 AUD 12-16 AUD 20-32 CLP 600 A CLP 600 A requires slight modification. A 13 A 18/26 A 36 A 48 CPP 500 A CPP 500 A

49

For other driving elements (HZ, built-up box piles, triple piles, etc.) please contact our Technical Department.

DRIVING ACCESSORIES

DRIVING ACCESSORIES DRIVING CAPS ­ CHARACTERISTICS

Type Dimensions A/B (or Ø), H mm UD 1 C B h H UD 3 A UD 3-B a/b Ø UD 2 1252/608/470 C = 260 1248/718/470 C = 315 1244/488/420 C = 200 1244/488/320 C = 200 a/b Ø B C A LD 2/3/4 C B h H AUD 20-32 A Ø a/b Ø h H CLP 600 A CLP 500 450/520/330 C = 260 Ø 560/330 C = 280 260 Ø 480/100 250 350/420/100 a/b Ø AUD 12-16 1042/750/420 C = 390 1530/744/520 C = 430 1573/744/520 C = 430 2100 600/400/170 1900 600/400/170 1000 Ø 600/170 h H LS 2/3/4 US-B 676/594/370 C = 290 674/590/390 C = 290 400 Ø 360/170 300 380/380/120 600 500/300/120 700 Ø 300/170 1250 Ø 500/170 Mass kg 1000 Dimensions of the dolly recess a/b (or Ø), h Ø 400/170

50

C

A Ø C B h H CPP 500 A 940/560/310 C = 280 380 Ø 480/100

A 13 A 18/26 H A 36 A 48

1240/548/420 C = 340 1160/660/420 C = 390 1180/708/470 C = 420 1080/730/470 C = 430

1000 1150 1500 1400

600/300/170 600/400/170 600/400/170 600/400/170

C B h

a/b

A

DRIVING ACCESSORIES

DRIVING ACCESSORIES SLIDING GUIDES

Sliding Guides

These pieces are designed to guide the driving cap along the lead, thus guaranteeing proper alignment of the hammer and the center of the cap.

Designation 330 44 417 360 200 300 UPN 300 40 470 500 70 640 700 70 840 460 700/90 fitting AUD cap (adaptation to the leader to be carried out in situ) 410 500/90 fitting A and LD cap (adaptation to the leader to be carried out in situ) 400 50 250 30 fitting UD cap (adaptation to the leader to be carried out in situ)

330/50

fitting US-B and LS cap (adaptation to the leader to be carried out in situ)

51

Arrangement of a Driving Cap

Hammer

b a c

a dolly / cushion b leader c sliding guide d driving cap

c

b

e

e leader slide

(not provided by ProfilARBED)

a d

e

d

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES

52

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES

Of all possible materials, steel is certainly the most popular and the most suitable for making sheet piling. The reasons are obvious: ­ Steel is homogenous, has high elasticity properties and, additionally, allows for a large range of plastic deformations. Therefore steel provides a high degree of reliability with excellent reserves from the point of view of load-carrying capacity. ­ The quality and intrinsic integrity of steel is easy to check, wherever the material is accessible and whenever checking is requested. ­ After fabrication, steel can still be adapted to all required, and even unforeseen, circumstances by machining, deforming, cutting, reassembling, welding, surface treatment etc. In contrast with all the above advantages the construction material steel is often criticized over questions of maintenance and certain doubts in respect of the sufficiency of its service lifetime. Especially for steel sheet piling, which is very often in direct contact with marine or other aggressive environments, the question of corrosion and the consequent undesirable weakening effects is being raised.

53

Unprotected steel in the atmosphere, in water and in soil is subject to corrosion that may lead to damage. Therefore, to avoid corrosion damage, steel structures are normally protected to withstand corrosion stresses during the required service life. Local weakening and rusting-through are normally considered to be maintenance problems. They can be remedied locally at the time of their occurrence. However, depending on life-time requirements and accessibility of the structure, it seems preferable to look for appropriate preventive maintenance right at the outset of the installation. There are different ways of protecting steel sheet pile structures from corrosion: ­ Corrosion protection by coating, either the full length or only part of the piles, ­ The choice of the sheet pile, for instance a minimum wall thickness, a static reserve by choosing a stronger section than statically required, or a higher steel grade, ­ Adapting the design to the corrosion intensity, avoiding important bending moments in the high corrosion-rate zones, ­ A concrete capping beam extending a certain distance below the low-water level, ­ Providing wooden or elastomer fender systems to reduce the abrasion effect, ­ Cathodic protection by impressed current or by sacrificial anodes, ­ To prevent microbially influenced corrosion, a compatible combination of surface coating in critical areas, and cathodic protection is recommended. In order to further increase the life-time of sheet piling structures, different protection measures can be combined.

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

The classical corrosion protection for steel sheet piling is surface coating. EN ISO 12944 deals with protection by paint systems and its various parts cover all the features that are important in achieving adequate corrosion protection.

54

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

In certain situations where there is no oxygen (deep under the ground) steel piling may not corrode. In most situations however, when exposed to the atmosphere in industrial or coastal area, to seawater, to freshwater, to polluted or disturbed ground, or to anaerobic bacteria, protection from corrosion is essential. When water and oxygen are available, corrosion takes place by an electrochemical process. Coating systems are used to protect against corrosion as well as for decoration, but before a coating system is applied it is essential that the steel surface is properly prepared.

Surface Preparation

Hot-rolled steel has a surface oxide layer known as millscale. This bluish oxide layer is brittle and only partly adherent to the steel surface. When the steel is exposed to air and water, it corrodes rapidly in the areas not covered by millscale. The corrosion quickly spreads under the millscale, causing it to flake off. If steel covered with millscale is coated, the corrosion reaction still takes place under the coating, although at a slower rate. The result is eventual coating breakdown. For this reason, it is essential to remove the millscale before coating. Abrasive blasting with grit or shot is one of the most efficient ways of removing scale and is now the most frequently used method of cleaning steel. An additional advantage of abrasive blasting is that it roughens the steel surface, providing a good bond for the adhesion of coatings. This is particularly important for the heavy-duty coatings used for applications such as resistance against severe abrasion.

55

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

Blasting Standards

ISO 8501-1 is the internationally accepted standard for determining the degree of cleanliness of abrasive blast-cleaned steel. The steel surface is compared to a series of standard photographs. The most commonly used preparation grades are as follows: ISO Sa 2,5 ISO Sa 3 Very thorough blast cleaning Blast cleaning to visually clean steel

Surface Profile Measurement

There are several ways of measuring the profile of an abrasive-blasted surface. Accurate laboratory instruments give the best information and replicas of the surface can be made on site or in the shop and analyzed in the laboratory. The use of a surface-profile comparator is faster. These make use of stainless-steel discs which have been blasted to various profiles and are compared by sight and feel to the blasted surface. ISO 8503 specifies the requirements for surface-profile comparators for grit-blasted and shot-blasted surfaces. The most commonly used roughness measurement is the average peak-tovalley height, known as Rz. This is usually stated in microns (0.001 mm), and the heigher the value, the rougher the surface. The minimum and maximum acceptable Rz values depend on the coating system.

56

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

Coating Systems

A coating system generally consists of one or two primers, at least one intermediate coat, and a topcoat. The primer of a paint system for steel has a large influence on the anti-corrosive properties of the total system. It provides good adhesion to the surface, a mechanism of corrosion inhibition, and a good base for the intermediate and topcoats. A zinc primer is often chosen for its good corrosion-inhibiting properties. The intermediate coat increases the total thickness and thus increases the distance for moisture diffusion to the surface. The topcoat is chosen for color and gloss retention, for chemical resistance, or for additional resistance to mechanical damage such as abrasion. Generally epoxies are used for seawater immersion and chemical resistance, polyurethanes for color and gloss retention. Each project has differing requirements. In some cases, it may be possible to apply an entire system in the shop, in others, perhaps just one or two coats in the shop and the remainder on site. When a zinc primer is shop-applied, the application of a sealer has a number of advantages. These include easier removal of contamination, prevention of zinc-salt formation and easier topcoating on site. Systems are designed to meet varying project requirements. The determination of especially abrasive resistant and impact-resistant coatings was the goal of selective research and test programs run by ProfilARBED. The result was the specification of primer/sealer systems or one-coat systems that could be shopapplied to afterwards resist hard driving conditions due to their abrasive-resisting characteristics. Long overcoating intervals and good corrosion resistance allow partial systems to be exposed on site for many months before the final coat(s) is (are) applied. In the following, paint systems are proposed for different environments according to the classification of EN ISO 12944.

57

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

Atmospheric Exposure

In industrial and coastal regions, the corrosion process is accelerated by the presence of salt and/or industrial pollution-particularly sulfur dioxide. The life of conventional paints is rather short, resulting in frequent maintenance periods. The use of heavy-duty epoxy/polyurethane systems will extend time to first maintenance and reduce the overall cost of steel protection. Sheet piling is often used in situations where part of it is exposed to the atmosphere, for example as a retaining wall. In such applications the aesthetical and functional look is important. A coal-tar-epoxy finish or a rusty surface are unlikely to be acceptable and so polyurethane finishes become an automatic choice. They combine gloss and color retention and the latest formulations are easy to apply and maintain.

Proposal (EN ISO 12944 ­ Table A4, corrosivity category C4) Zinc silicate epoxy primer Recoatable epoxy intermediate coating Aliphatic polyurethane topcoat Nominal dry film thickness of the system

240 µm (9.45 mil)

Freshwater Immersion

58

Freshwater immersion service is usually less corrosive than in marine conditions, although in brackish water or polluted water conditions can still be quite severe. There are often aesthetic considerations in fresh-water projects. For convenience here, a system has been chosen which is capable of performing well both above and below water. This avoids the need to apply separate systems for above- and below-water areas, saving time and cost. The proposed system is tar-free and suitable for both immersion and atmospheric exposure. Where maximum color and gloss retention is required, a polyurethane finish may be applied as topcoat.

Proposal (EN ISO 12944 ­ Table A8, corrosivity category Im 1) Primer Polyamine cured epoxy coating Nominal dry film thickness of the system

300 µm (11.80 mil)

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

Seawater Immersion

Structures continuously or partially immersed in seawater require careful attention. Abrasion and impact (direct or indirect) may damage the coating system and soluble salts from the sea will accelerate the rate of corrosion at the damaged areas. For long-term performance in immersion there should be no compromise on quality. The specification must be clear and surface preparation must be good. The application must be properly carried-out and inspected and, of course, the coating system must be of high quality. Cathodic protection is often specified in combination with a coating system and it is essential that the chosen coating system has been fully tested for compatibility.

Proposal (EN ISO 12944 ­ Table A8, corrosivity category Im 2) Polyamide cured epoxy primer Polyamide cured coaltar epoxy coating Nominal dry film thickness of the system

450 µm (17.70 mil)

As an alternative, glass-flake-reinforced epoxy coating could be used with the appropriate primer and sealer.

59

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES COATING

Waste Disposal

Sheet piling is increasingly being used to isolate severely contaminated ground. It is also used to contain polluted soil which has been moved from other areas. Here an excellent standard of steel protection is essential. The coating system may have to protect the steel from highly acidic soil. It must have an outstandingly good chemical resistance and especially good resistance to mineral and organic acids. The system must also be able to withstand abrasion and impact.

Proposal Micaceous iron oxide pigmented polyamide cured epoxy primer Polyamine cured epoxy coating with increased chemical resistance Nominal dry film thickness of the system 480 µm (19.80 mil)

60

DURABILITY OF SHEET PILES

DURABILITY OF SHEET PILES HOT DIP GALVANIZING

Hot-Dip Galvanizing

The procedure consists in dipping the steel to be coated into molten zinc, after adequate surface preparation, and thereby creating a steel-zinc alloy on the steel surface and providing a pure zinc coating outer surface. For surface preparation, the steel is submitted to a pickling bath (acid) and a flux treatment (chlorides). The zinc bath has a temperature of 450 °C (842° F) and the minimum thickness of the finished layer is 85 µm (3.3 mil), in compliance with EN ISO 1461. If a paint system is applied on the zinc coating, it is referred to as a duplex solution. Since galvanization of the finished product has an influence on the chemical analysis of the steel, the intention to galvanize must be specified in the purchase order. On the other hand, the intention to apply a paint system to the zinc coating should be indicated to the galvanizer.

61

WATERTIGHTNESS

WATERTIGHTNESS

62

WATERTIGHTNESS

WATERTIGHTNESS

THEORETICAL ASPECTS

The watertightness of the walls is one of the important selection criteria for construction processes in

certain types of works, as for example: underground-parking areas, tunnels, waste containment, etc. Steel sheet piling, by definition the separation element between two different types of material, constitutes an ideal solution for resolving the problem of watertight walls provided it is possible to find: ­ A method of precisely calculating the rate of flow through the interlocks, ­ Solutions to the practical problems which arise during the construction of watertight walls.

Calculation

ProfilARBED has carried out an exhaustive research program in collaboration with Delft Geotechnics for the assessment of the seepage resistance of steel sheet pile walls. The kind of flow is difficult to determine, but most likely it is not a porous-media type of flow and Darcy's law does not hold for the local seepage through a joint. To accommodate this difficulty, the concept of Joint Resistance was introduced, a factor of proportionality between the discharge through a sheet pile interlock and the water pressure (see EN 12063).

Sheet pile

p qz = z w

Where: qz pz the discharge per unit length of joint at level z [m3/s/m] the pressure drop at level z [kPa] the inverse Joint Resistance [m/s] determined by tests the unit weight of water [kN/m3]

63

Porous medium

w

Watertightness requirements may e.g. be formulated as follows: ­ The total flow into a building pit may be limited to a maximum allowable value, ­ An imperviousness equivalent to a given concrete-wall thickness and permeability may be asked for. The concept of Joint Resistance makes it possible to meet these requirements with a sheet pile wall (see also our special brochure `The impervious steel sheet pile wall ­ Part I').

WATERTIGHTNESS

WATERTIGHTNESS

PRACTICAL ASPECTS

Sealing

For practical design purposes it is advisable to assess the degree of the required seepage resistance in order to select a cost-effective solution. Depending on the requirements, there are several possible solutions: ­ In applications such as temporary retaining walls a moderate rate of seepage is often acceptable. A steel sheet pile wall made of piles with the famous Larssen interlock may provide sufficient seepage resistance ( 10 ­6 m/sec) ­ In applications where a medium to high seepage resistance is required ­ such as cut-off walls for contaminated sites, retaining structures for bridge abutments and tunnels ­ double piles with a workshop-sealed or welded intermediate joint should be used. Filler materials are used to seal the intermediate joint of double piles in the workshop and/or the free interlock to be threaded on site. · The lower end of the resistance range is adequately served by a bituminous filler (Beltan) ( 6 10 ­8 m/sec), but it is noted that its use is limited to water pressures less than 100 kPa (14.5 PSI). · For high resistance requirements, as well as water pressures up to 200 kPa (29 PSI), a waterswelling product should be used as a filler material. (Roxan® -System)* ( 3 10 ­10 m/sec). The common interlock of double piles is tightened with a 2-component Polyurethan sealant. ­ 100% watertightness may be obtained by welding every joint. Double piles with a workshop weld are used for the construction of the wall. The interlocks remaining to be threaded on site have to be welded after excavation to the greatest depth possible. When aesthetic aspects are the most important feature, a special sealer may be used after installation of the sheet piles. This polyurethane product fills the gap at the interlock and in contact with air transforms into a highperformance elastomer which may be ground and overcoated. (See also our special brochure 'The impervious steel sheet pile wall ­ Part II`)

* Roxan® is a trademark of ProfilARBED

64

Photograph of the Roxan®-System

DECLUTCHING DETECTION

DECLUTCHING DETECTION

65

DECLUTCHING DETECTION

DECLUTCHING DETECTION

In critical conditions, where correct interlocking of the piles is a must and where difficult soil conditions could create a risk of declutching, special interlocking control devices may be installed for absolute safety. A detector fitted at toe level (or at other levels) in the front interlock of a sheet pile (in the driving direction) provides control of the interlocking with the following sheet pile. The detector consists of a pin designed to allow the function to be checked after driving; it shears off, transmitting a signal to the surface by means of a cable fixed in a tube welded on the pile. The detector has been designed to work in all kinds of environments, e.g. in salt water.

Installation of the detector on the sheet pile

Function of the declutching detector

Control box

Sheet pile interlock Following pile Shear-pin detector Welded protection Cable tube

66

DELIVERY CONDITIONS

DELIVERY CONDITIONS

67

DELIVERY CONDITIONS

TOLERANCES AND ROLLING LENGTHS

DELIVERY CONDITIONS

Tolerances on Sheet Piles

Reference standard: EN 10248

Tolerances Mass Length Height 8 in : ± 0.16 in > 8 in : ± 0.20 in AU, PU, LS, JSP AZ ±5% ± 8 in 8 in: ± 0.20 in 8 in < ± 0.24 in < 12 in 12 in : ± 0.28 in Thickness t, s 0.335 in: ± 0.02 in t, s > 0.335 in: ±6% Width Double Pile Width Straightness Ends out of square Reduced tolerances on request. ±2% ±3% 0.2 % of the length 2%b t, s 0.492 in: + 0.08 in / ­ 0.04 in t, s > 0.492 in: + 0.10 in / ­ 0.06 in ± 0.20 in AS 500 HZ

Maximum Rolling Lengths

Section AU ­ PU ­ LS ­ JSP AS 500 AZ HZ RH / RZ OMEGA 18 C9 / C14 / DELTA 13 Longer sections available on request. Length 102 ft 102 ft 102 ft 108 ft 79 ft 52 ft 59 ft

68a

DELIVERY CONDITIONS

TOLERANCES AND ROLLING LENGTHS

DELIVERY CONDITIONS

Tolerances on Sheet Piles

Reference standard: EN 10248

Tolérances Mass Length Height 200 mm : ± 4.0 mm > 200 mm : ± 5.0 mm AU, PU, LS, JSP AZ ±5% ± 200 mm 200 mm : ± 5.0 mm 200 mm < ± 6.0 mm < 300 mm 300 mm : ± 7.0 mm Thickness t, s 8.5 mm : ± 0.5 mm t, s > 8.5 mm ±6% Width Double Pile Width Straightness Ends out of square Reduced tolerances on request. ±2% ±3% 0.2 % of the length 2%b t, s 12.5 mm : + 2.0 mm / ­ 1.0 mm t, s > 12.5 mm + 2.5 mm / ­ 1.5 mm ± 5.0 mm AS 500 HZ

Maximum Rolling Lengths

Section AU ­ PU ­ LS ­ JSP AS 500 AZ HZ RH / RZ OMEGA 18 C9 / C14 / DELTA 13 Longer sections available on request. Length 31.0 m 31.0 m 31.0 m 33.0 m 24.0 m 16.0 m 18.0 m

68

DELIVERY CONDITIONS

HANDLING HOLES AND MARKING

DELIVERY CONDITIONS

Handling Holes

Sheet pile sections are normally supplied without handling holes. If requested, they can be provided with handling holes in the centerline of the section. Standard dimensions: Ø = 50 mm; Y = 200 mm Ø = 50 mm; Y = 250 mm Ø = 40 mm; Y = 75 mm Ø = 40 mm; Y = 300 mm Ø = 2.5 in; Y = 9 in (Ø = 63.5 mm; Y = 230 mm)

Other dimensions on request.

Z Sections

Y

U Sections

Y

Straight Web Sections

Y

HZ Sections

Y

Marking

The following markings can be supplied on request: ­ color marks on the top of each pile defining section, length and steel grade ­ adhesive stickers showing the name of the customer, the destination, the order number, the type and length of profile, ...

69

DELIVERY CONDITIONS

STEEL GRADES AND INSPECTION

DELIVERY CONDITIONS

Steel Grades

The standard we normally refer to regarding steel grades for hot-rolled sheet piles is EN 10248 Part 1. The mechanical properties and chemical composition are shown in the table below.

Chemical composition (% max) Grade Min. yield point N/mm2 S 240 GP S 270 GP S 320 GP S 355 GP S 390 GP 240 270 320 355 390 Min. tensile strength N/mm2 340 410 440 480 490 Min. elongation Lo = 5.65 % 26 24 23 22 20 19 So C 0.25 0.27 0.27 0.27 0.27 0.27 Mn ­ ­ 1.70 1.70 1.70 1.70 Si ­ ­ 0.60 0.60 0.60 0.60 P 0.055 0.055 0.055 0.055 0.050 0.050 S 0.055 0.055 0.055 0.055 0.050 0.050 N 0.011 0.011 0.011 0.011 0.011 0.011

S 430 GP 430 510 For details see EN 10248, grade S 450 GP upon request

We can also provide steel grades complying with other standards. The table below compares the main standards used world-wide. For chemical composition, see the corresponding standard.

Reference standard EN 10248 S 240 GP S 270 GP S 320 GP S 355 GP S 390 GP S 430 GP

Comparable international standards ASTM CSA JIS

A 328 A 572 Gr. 50; A 690 A 572 Gr. 55 A 572 Gr. 60

Gr. 260 W Gr. 300 W Gr. 350 W

SY 295

SY 390 Gr. 400 W

S 450 GP A 572 Gr. 65 Grades S 450 GP, A 690 and A 572 Gr. 65 upon request

Materials to other specifications, such as special steels, steel with an improved corrosion resistance, or copper addition in accordance with EN 10248 Part 1 Chapter 10.4 can be supplied on request. Grade A 690 with higher yield strength upon request. If the steel sheet pile is to be galvanised, this must be specified in the purchase order as it has an influence on the chemical composition of the steel used. It is recommended that when placing orders the purchaser inform the manufacturer of any surface treatment to be applied to the product after delivery.

70

DELIVERY CONDITIONS

STEEL GRADES AND INSPECTION

DELIVERY CONDITIONS

Protecting the environment

is everyone's concern

ProfilARBED's entire production is made from indefinitely recyclable scrap. The concept of "sustainable development" involves all the decision-making players in the group's environmental policy, which ensures that as much attention is paid to environmental concerns as to safety issues. Use of steel in construction limits the nuisance caused by building sites; factors such as noise, dust and the large surface areas involved, thus helping to restore a favourable energy balance : All our steel sheet piles are made out of 100% recycled steel, are re-usable and recyclable at the end of their lifetime. We have a full ISO 14001 certification.

Inspection and Testing

Steel sheet piling can be supplied to the specifications of the customer or according to the prescriptions of a given standard. Standard normally referred to for inspection and testing specification: EN 10248. Standard normally referred to for certificates: EN 10204.

71

DELIVERY CONDITIONS

PRODUCTION LINE

Scrap yard Electric arc furnace

DELIVERY CONDITIONS

Continuous casting machine

Ladle furnace

Walking beam furnace

Rolling mill

72

HP PILES

HP PILES

73

steel bearing piles are special H beams with the same flange and web thickness. Bearing piles of this type are used all over the world for the deep foundations of various structures: high-rise buildings, industrial constructions, bridges, etc. The most important of the multiple advantages are the following: ­ Easy installation, considering driving as well as handling, transport and storing. ­ No limits on the length of the pile, due to easy adaptation to soil conditions by splicing. ­ Control of the bearing capacity by dynamic measurement during driving. ­ Easy connection to the superstructure. ­ Bending moment capacity for horizontal forces. ­ Immediate loading after driving. ­ Excellent durability; extensive experience with totally embedded piles has shown a corrosion rate tending to zero.

HP

HP PILES

Section Mass G kg/m HP 200 x 43 HP 200 x 53 HP 220 x 57.2 HP 260 x 75 HP 260 x 87.3 HP 305 x 79 HP 305 x 88 1 ) HP 305 x 95 1) HP 305 x 110 1) 2) HP 305 x 126 1) 2) HP 305 x 149 )

1

HP PILES

CHARACTERISTICS

HISTAR 4) Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Hi Steel area A cm2 54.14 68.14 72.85 95.54 111.2 99.9 111.6 121.7 140.2 161.6 190.0 229.3 237.0 285.0 112.7 131.0 149.5 186.9 234.5 107.3 138.9 168.5 193.8 221.7 229.3 155.9 178.6 201.4 224.3 247.5 270.7 294.2 Total area A tot =hxb cm2 410 422.3 471.5 659.9 675.5 917.1 926.8 936.6 955.4 976.2 1005 1044 1052 1100 921.1 939.4 957.9 995.3 1043 1248 1283 1314 1338 1367 1375 1357 1380 1403 1426 1449 1472 1495 Perimeter P m 1.180 1.200 1.265 1.493 1.505 1.780 1.782 1.788 1.800 1.813 1.832 1.857 1.861 1.891 1.752 1.764 1.776 1.800 1.830 2.102 2.123 2.140 2.153 2.169 2.173 2.202 2.214 2.226 2.238 2.250 2.262 2.274 Moment of inertia ly lz cm4 3888 4977 5729 10650 12590 16331 18380 20170 23550 27540 cm4 1294 1673 2079 3733 4455 5278 5949 6552 7680 9019 Section modulus Wy Wz cm3 388.8 488.0 545.6 855.1 994.9 1091 1218 1328 1530 1763 2075 2508 2594 3127 1237 1437 1638 2048 2574 1364 1768 2144 2466 2823 2923 1998 2288 2581 2876 3174 3474 3777 cm3 126.2 161.7 185.2 281.7 333.7 344.5 387.3 425.1 495.0 577.2 688.8 847.4 879.3 1081 370.6 438.2 507.5 651.3 841.2 449.2 590.7 725.3 842.3 973.5 1011 710.3 820.2 932.4 1047 1163 1282 1403

Dimensions h mm 200 204 210 249 253 299.3 301.7 303.8 307.9 312.4 318.5 326.7 328.3 338.0 303 307 311 319 329 340.0 346.4 351.9 356.4 361.5 362.9 348 352 356 360 364 368 372 b mm 205 207 224.5 265 267 306.4 307.2 308.3 310.3 312.5 315.6 319.7 320.5 325.4 304 306 308 312 317 367.0 370.5 373.3 375.5 378.1 378.8 390 392 394 396 398 400 402 tw mm 9 11.3 11 12 14 11 12.3 13.4 15.4 17.7 20.7 24.8 25.6 30.5 12 14 16 20 25 10.0 12.9 15.6 17.9 20.4 21.1 14 16 18 20 22 24 26 tf mm 9 11.3 11 12 14 11 12.3 13.4 15.4 17.7 20.7 24.8 25.6 30.5 12 14 16 20 25 10.0 12.9 15.6 17.9 20.4 21.1 14 16 18 20 22 24 26

42.5 53.5 57.2 75 87.3 78.4 88 95 110 126 149 180 186 223 88.5 103 117 147 184 84.3 109 133 152 174 180 122 140 158 176 194 213 231

33050 10870 40970 13550 42580 14090 52840 17590 18740 22050 25480 5634 6704 7815

HP 305 x 180 HP 305 x 186 1) HP 305 x 223 1) HP 320 x 88.5 HP 320 x 103 HP 320 x 117 HP 320 x 147 HP 320 x 184 HP 360 x 84.3 3) HP 360 x 109 ) )

1 2

32670 10160 42340 13330 23190 8243

30620 10940 37730 13540 43950 15810 51020 18400 53040 19140 34770 13850 40270 16080 45940 18370 51770 20720 57760 23150 63920 25640 70260 28200

HP 360 x 133 1) 2) HP 360 x 152 1) 2) HP 360 x 174 1) 2) HP 360 x 180 HP 400 x 122 HP 400 x 140 HP 400 x 158 HP 400 x 176 HP 400 x 194 HP 400 x 213 HP 400 x 231

1 2

) Section conforming to BS4: Part1: 1993. ) Sections also available according to ASTM A6-2000 3 ) Only after agreement 4 ) Sections marked Hi are available in HISTAR 420 and HISTAR 460 grades (see special HP catalogue for details). Special delivery conditions: The HP sections are delivered in steel grades compliant with EN 10025 and EN 10113. Delivery of other steel grades on request. Minimum tonnage of 40 tons, for the sections HP 200 x 43; HP 200 x 53; HP 220 x 57,2; HP 260 x 75­87,3; HP 320 x 88.5­184; HP 400 x 122­231 (derivative section and grade). Minimum tonnage of 5 tons for the sections HP 305 x 88­223; HP 360 x 109­180 (derivative section, grade, length). Tolerances are in accordance with EN 10034. Delivery acc. to other tolerances upon request.

74

DOCUMENTATION

STEEL SHEET PILES / BEARING PILES

Sales Program Ref. 1.3.03.1: E; F; D; SP; NL; RU; PL; P; I

HZ Wall System Ref. 1.4.02.1: E; F 1.4.01.1: D 1.14.01.1: US

Bearing Piles Ref. 7.1.1.01.1: X

Cold Formed Sheet Piles Ref. 1.6.03.1: E; F; D; NL

ISPC Services Ref. 6.1.00.1: E; F; NL; SP

Aménagement berges Ref. 3.31.98.1: D 3.31.02.1: F

Container Terminal Hamburg Altenwerder Ref. 4.10.01.1: X

Munich Airport Extension Ref. 4.16.01.1: X

Redevelopment of a landfill Ref. 4.32.98.1: E; F; D

Donauhafen Straubing-Sand Ref. 4.6.97.1: D

Tar Waste Disposal Ref. 4.31.01.1: X

Berth 5 ­ Calais Ref. 4.7.99.1: X

Les rideaux de palplanches dans la protection de canaux Ref. 3.14.03.1: F; D

Harbour Construction Ref. 4.1.03.1: X

Rail- and Motorway Construction 1 + 2 Ref. 4.14.97.1: X

Roadworks using sheet piles Ref. 4.11.03.1: X

Underground Car Parks Ref. 4.12.03.1: E; D; F

The Impervious SSP Wall Design Ref. 2.1.03.1: E; F; D Practical Ref. 2.2.03.1: E; F; D

Design Disk

Arcelor Group

PROFILARBED S.A.

75

Dixeran Declutching detector Ref. 2.5.01.1: X D E = German = English F I

Protection des palplanches en acier Ref. 2.11.94.1: F; D = French = Italian

Installation of Steel Sheet Piles Ref. 2.21.01: E; F; D NL = Dutch PL = Polish

Pocket Program Ref. 1.2.03.1: E

P = Portuguese RU = Russian

SP = Spanish US = Imperial Units

X

= D; E; F or SP

FAX TO ALC

DOCUMENTATION REQUEST

To From

Company: Name: Address:

ARCELOR LONG COMMERCIAL S.A. Sheet Piling 66, rue de Luxembourg L-4221 Esch/Alzette, Luxembourg Phone (+352) 5313-3105 Fax (+352) 5313-3290 E-mail: [email protected] http://www.alc.arcelor.com

Phone/Fax: E-mail: Country:

Please send me the following documents Reference Title Language

76

Fax this request to Arcelor Long Commercial +352 5313 3290

FAX TO ALC

DOCUMENTATION REQUEST

To From

Company: Name: Address: City: State: Phone/Fax: E-mail: Country:

Skyline Steel Corporation

8, Woodhollow Road, Ste. 102 · Parsippany, NJ 07054 Technical Hotline: 1-866-8SKYLINE · 1-866-875.9546 Phone (973) 428-6100 · Fax (973) 428-7399 E-mail: [email protected] · http://www.skylinessteel.com

Arcelor Long Commercial Sheet Piling

66, rue de Luxembourg · L-4009 Esch/Alzette, Luxembourg Phone (+352) 5313-3105 · Fax (+352) 5313-3290 E-mail: [email protected] · http://www.alc.arcelor.com

Please send me the following documents Reference Title Language

76

Fax this request to Skyline (973) 428-7399 or to Arcelor Long Commercial +352 5313 3290

Information

98 pages

Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

508557


You might also be interested in

BETA