#### Read SPDTableOfContents.qxd text version

`Short Circuit Current CalculationsThree-Phase Short CircuitsBasic Point-to-Point Calculation ProcedureStep 1. Determine the transformer full load amps (F.L.A.) from either the nameplate, the following formulas or Table 1:At some distance from the terminals, depending upon wire size, the L-N fault current is lower than the L-L fault current. The 1.5 multiplier is an approximation and will theoretically vary from 1.33 to 1.67. These figures are based on change in turns ratio between primary and secondary, infinite source available, zero feet from terminals of transformer, and 1.2 x %X and 1.5 x %R for L-N vs. L-L resistance and reactance values. Begin L-N calculations at transformer secondary terminals, then proceed point-to-point.Step 5. Calculate &quot;M&quot; (multiplier) or take from Table 2. 1 1 +f Calculate the available short circuit symmetrical RMS current at the point of fault. Add motor contribution, if applicable. M= I S.C. sym. RMS = IS.C. x M Step 6A. Motor short circuit contribution, if significant, may be added at all fault locations throughout the system. A practical estimate of motor short circuit contribution is to multiply the total motor current in amps by 4. Values of 4 to 6 are commonly accepted.Step 2.Find the transformer multiplier. See Notes 1 and 2 100 Multiplier = *% Z transformer Step 6.* Note 1. Get %Z from nameplate or Table 1. Transformer impedance (Z) helps to determine what the short circuit current will be at the transformer secondary. Transformer impedance is determined as follows: The transformer secondary is short circuited. Voltage is increased on the primary until full load current flows in the secondary. This applied voltage divided by the rated primary voltage (times 100) is the impedance of the transformer. Example: For a 480 Volt rated primary, if 9.6 volts causes secondary full load current to flow through the shorted secondary, the transformer impedance is 9.6/480 = .02 = 2%Z. * Note 2. In addition, UL (Std. 1561) listed transformers 25kVA and larger have a ± 10% impedance tolerance. Short circuit amps can be affected by this tolerance. Therefore, for high end worst case, multiply %Z by .9. For low end of worst case, multiply %Z by 1.1. Transformers constructed to ANSI standards have a ±7.5% impedance tolerance (twowinding construction). Step 3. Determine by formula or Table 1 the transformer letthrough short-circuit current. See Notes 3 and 4. Note 3. Utility voltages may vary ±10% for power and ±5.8% for 120 Volt lighting services. Therefore, for highest short circuit conditions, multiply values as calculated in step 3 by 1.1 or 1.058 respectively. To find the lower end worst case, multiply results in step 3 by .9 or .942 respectively. Note 4. Motor short circuit contribution, if significant, may be added at all fault locations throughout the system. A practical estimate of motor short circuit contribution is to multiply the total motor current in amps by 4. Values of 4 to 6 are commonly accepted. Step 4. Calculate the &quot;f&quot; factor. 3Ø Faults 1Ø Line-to-Line (L-L) Faults See Note 5 &amp; Table 3 1Ø Line-to-Neutral (L-N) Faults See Note 5 &amp; Table 3 1.732 x L x I 3Ø f= C x n x E L-L 2 x L x I L-L f= C x n x EL-L 2 x L x I L-N f= C x n x EL-NCalculation of Short-Circuit Currents at Second Transformer in SystemUse the following procedure to calculate the level of fault current at the secondary of a second, downstream transformer in a system when the level of fault current at the transformer primary is known.MAIN TRANSFORMERIS.C. primary H.V. UTILITY CONNECTIONIS.C. secondaryIS.C. primaryIS.C. secondaryProcedure for Second Transformer in SystemStep A. Calculate the &quot;f&quot; factor (IS.C. primary known)3Ø Transformer (I S.C. primary and I S.C. secondary are 3Ø fault values) 1Ø Transformer (I S.C. primary and I S.C. secondary are 1Ø fault values: I S.C. secondary is L-L) I S.C. primary x Vprimary x 1.73 (%Z) 100,000 x Vtransformerf=Where: L = length (feet) of conductor to the fault. C = constant from Table 4 of &quot;C&quot; values for conductors and Table 5 of &quot;C&quot; values for busway. n = Number of conductors per phase (adjusts C value for parallel runs) I = Available short-circuit current in amperes at beginning of circuit. E = Voltage of circuit.  Note 5. The L-N fault current is higher than the L-L fault current at the secondary terminals of a single-phase center-tapped transformer. The short-circuit current available (I) for this case in Step 4 should be adjusted at the transformer terminals as follows: At L-N center tapped transformer terminals, IL-N = 1.5 x IL-L at Transformer Terminals.f=I S.C. primary x Vprimary x (%Z) 100,000 x VtransformerStep B.Calculate &quot;M&quot; (multiplier). M= 1 1 +fStep C.Calculate the short-circuit current at the secondary of the transformer. (See Note under Step 3 of &quot;Basic Point-toPoint Calculation Procedure&quot;.) I S.C. secondary = Vprimary Vsecondary x M x I S.C. primary©2005 Cooper Bussmann193Short Circuit Current CalculationsThree-Phase Short CircuitsSystem AAvailable Utility Infinite Assumption 1500 KVA Transformer, 480V, 3Ø, 3.5%Z, 3.45%X, .56%R If.l. =1804A 25' - 500kcmil 6 Per Phase Service Entrance Conductors in Steel Conduit 2000A Switch One-Line DiagramFault X1Step 1. If.l. = 1500 x 1000 = 1804A 480 x 1.732Fault X2Step 4. Use IS.C.sym RMS @ Fault X1 to calculate &quot;f&quot; f= 1.732 x 50 x 49,803 = .4050 22,185 x 480 1 = .7117 1 + .4050Step 2. Step 3.Multiplier = 100 = 28.57 3.5 IS.C.=1804 x 28.57 = 51,540A IS.C. motor contrib = 4 x 1,804* = 7,216A Itotal S.C. sym RMS = 51,504 + 7,216 = 58,720A Step 5. Step 6.M=IS.C. sym RMS = 49,803 x .7117 = 35,445A Isym motor contrib = 4 x 1,804* = 7,216A Itotal S.C. sym RMS = 35,445 + 7,216 = 42,661A(fault X2)KRP-C-2000SP Fuse Fault X1 1 400A Switch LPS-RK-400SP FuseStep 4.fx x = 1.732 25 51,540 = 0.0349 22,185 x 6 x 480 1 = .9663 1 + .0349Step 5. Step 6.M=IS.C.sym RMS = 51,540 x .9663 = 49,803A IS.C.motor contrib = 4 x 1,804* = 7,216A ItotalS.C. sym RMS = 49,803 + 7,216 = 57,019A( fault X1)50' - 500 kcmil Feeder Cable in Steel ConduitFault X2 2 Motor ContributionM*Assumes 100% motor load. If 50% of this load was from motors, IS.C. motor contrib. = 4 x 1,804 x .5 = 3608ASystem BAvailable Utility Infinite Assumption 1000 KVA Transformer, 480V, 3Ø, 3.5%Z If.l.= 1203AOne-Line DiagramFault X1Step 1. If.l. = 1000 x 1000 = 1203A 480 x 1.732 Multiplier = 100 = 28.57 3.5Fault X2Step 4. f = 1.732 x 20 x 33,215 = .1049 2 x 11,424 x 480 M= 1 = .905 1 + .1049Step 2. Step 3.Step 5. Step 6.IS.C. = 1203 x 28.57 = 34,370A f= 1.732 x 30 x 34,370 = .0348 26,706 x 4 x 480IS.C.sym RMS = 33,215 x .905 = 30,059A30' - 500 kcmil 4 Per Phase Copper in PVC ConduitStep 4.Fault X31600A Switch KRP-C-1500SP Fuse Fault X1 400A Switch LPS-RK-350SP Fuse 1Step 5. Step 6. 33,215AM=1 = .9664 1 + .0348RMSStep A.f=30,059 x 480 x 1.732 x 1.2 = 1.333 100,000 x 225 1 = .4286 1 + 1.333 480 x .4286 x 30,059 = 29,731A 208I S.C.sym= 34,370 x .9664 = Step B. M=Step C.IS.C. sym RMS =20' - 2/0 2 Per Phase Copper in PVC Conduit Fault X2 2225 KVA transformer, 208V, 3Ø 1.2%Z Fault X3 3194©2005 Cooper BussmannShort Circuit Current CalculationsSingle-Phase Short CircuitsShort circuit calculations on a single-phase center tapped transformer system require a slightly different procedure than 3Ø faults on 3Ø systems.1. It is necessary that the proper impedance be used to represent the primary system. For 3Ø fault calculations, a single primary conductor impedance is only considered from the source to the transformer connection. This is compensated for in the 3Ø short circuit formula by multiplying the single conductor or single-phase impedance by 1.73. However, for single-phase faults, a primary conductor impedance is considered from the source to the transformer and back to the source. This is compensated in the calculations by multiplying the 3Ø primary source impedance by two. 2. The impedance of the center-tapped transformer must be adjusted for the halfwinding (generally line-to-neutral) fault condition. The diagram at the right illustrates that during line-to-neutral faults, the full primary winding is involved but, only the half-winding on the secondary is involved. Therefore, the actual transformer reactance and resistance of the half-winding condition is different than the actual transformer reactance and resistance of the full winding condition. Thus, adjustment to the %X and %R must be made when considering line-to-neutral faults. The adjustment multipliers generally used for this condition are as follows:A B C Primary SecondaryShort CircuitPrimary Secondary Short Circuit L2 N L1· 1.5 times full winding %R on full winding basis. · 1.2 times full winding %X on full winding basis. Note: %R and %X multipliers given in &quot;Impedance Data for Single Phase Transformers&quot; Table may be used, however, calculations must be adjusted to indicate transformer kVA/2.3. The impedance of the cable and two-pole switches on the system must be considered &quot;both-ways&quot; since the current flows to the fault and then returns to the source. For instance, if a line-to-line fault occurs 50 feet from a transformer, then 100 feet of cable impedance must be included in the calculation. The calculations on the following pages illustrate 1Ø fault calculations on a singlephase transformer system. Both line-to-line and line-to-neutral faults are considered.Note in these examples:a. The multiplier of 2 for some electrical components to account for the single-phase fault current flow, b. The half-winding transformer %X and %R multipliers for the line-to-neutral fault situation, and c. The kVA and voltage bases used in the per-unit calculations.L1 N Short Circuit L250 Feet©2005 Cooper Bussmann195Short Circuit Current CalculationsSingle-Phase Short Circuits196©2005 Cooper BussmannShort Circuit Current CalculationsImpedance &amp; Reactance DataTransformers Table 1. Short-Circuit Currents Available from Various Size Transformers(Based upon actual field nameplate data or from utility transformer worst case impedance)Full % Short Load Impedance Circuit k VA Amps (Nameplate) Amps 25 104 1.5 12175 37.5 156 1.5 18018 120/240 50 208 1.5 23706 1 ph.* 75 313 1.5 34639 100 417 1.6 42472 167 696 1.6 66644 45 125 1.0 13879 75 208 1.0 23132 112.5 312 1.11 31259 150 416 1.07 43237 120/208 225 625 1.12 61960 3 ph.** 300 833 1.11 83357 500 1388 1.24 124364 750 2082 3.50 66091 1000 2776 3.50 88121 1500 4164 3.50 132181 2000 5552 4.00 154211 2500 6940 4.00 192764 75 90 1.00 10035 112.5 135 1.00 15053 150 181 1.20 16726 225 271 1.20 25088 300 361 1.20 33451 277/480 500 602 1.30 51463 3 ph.** 750 903 3.50 28672 1000 1204 3.50 38230 1500 1806 3.50 57345 2000 2408 4.00 66902 2500 3011 4.00 83628 * Single-phase values are L-N values at transformer terminals. These figures are based on change in turns ratio between primary and secondary, 100,000 KVA primary, zero feet from terminals of transformer, 1.2 (%X) and 1.5 (%R) multipliers for L-N vs. L-L reactance and resistance values and transformer X/R ratio = 3.** Three-phase short-circuit currents based on &quot;infinite&quot; primary. Impedance Data for Single-Phase TransformersSuggested Normal Range Impedance Multipliers** X/R Ratio of Percent For Line-to-Neutral kVA for Impedance (%Z)* Faults 1Ø Calculation for %X for %R 25.0 1.1 1.2­6.0 0.6 0.75 37.5 1.4 1.2­6.5 0.6 0.75 50.0 1.6 1.2­6.4 0.6 0.75 75.0 1.8 1.2­6.6 0.6 0.75 100.0 2.0 1.3­5.7 0.6 0.75 167.0 2.5 1.4­6.1 1.0 0.75 250.0 3.6 1.9­6.8 1.0 0.75 333.0 4.7 2.4­6.0 1.0 0.75 500.0 5.5 2.2­5.4 1.0 0.75 * National standards do not specify %Z for single-phase transformers. Consult manufacturer for values to use in calculation. ** Based on rated current of the winding (one­half nameplate kVA divided by secondary line-to-neutral voltage).Voltage and PhaseNote: UL Listed transformers 25 kVA and greater have a ± 10% tolerance on their impedance nameplate. This table has been reprinted from IEEE Std 242-1986 (R1991), IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems, Copyright© 1986 by the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE Standards Department.. Impedance Data for Single-Phase and Three-Phase TransformersSupplementkVA 1Ø 10 15 3Ø %Z -- 1.2 -- 1.3 75 1.11 150 1.07 225 1.12 300 1.11 333 -- 1.9 500 1.24 500 -- 2.1 These represent actual transformer installations. Suggested X/R Ratio for Calculation 1.1 1.1 1.5 1.5 1.5 1.5 4.7 1.5 5.5 nameplate ratings taken from fieldUL listed transformers 25 KVA or greater have a ±10% impedance toler ance. Short-circuit amps shown in Table 1 reflect ­10% condition. Transformers constructed to ANSI standards have a ±7.5% impedance tolerance (two-winding construction). For example, a 10% increase in system voltage will result in a 10% greater available short-circuit currents than as shown in Table 1. Fluctuations in system voltage will affect the available short-circuit current.Note: UL Listed transformers 25kVA and greater have a ±10% tolerance on their impedance nameplate.©2005 Cooper Bussmann197Short Circuit Current CalculationsConductors &amp; Busways &quot;C&quot; ValuesTable 4. &quot;C&quot; Values for ConductorsCopper AWG Three Single Conductors or Conduit kcmil Steel 600V 5kV 15kV 14 389 12 617 10 981 8 1557 1551 6 2425 2406 2389 4 3806 3751 3696 3 4774 4674 4577 2 5907 5736 5574 1 7293 7029 6759 1/0 8925 8544 7973 2/0 10755 10062 9390 3/0 12844 11804 11022 12543 4/0 15082 13606 13644 250 16483 14925 14769 300 18177 16293 15678 350 19704 17385 16366 400 20566 18235 17492 500 22185 19172 17962 600 22965 20567 18889 750 24137 21387 19923 1,000 25278 22539 Aluminum 14 237 12 376 10 599 8 951 950 1472 6 1481 1476 2333 2319 4 2346 2928 2904 3 2952 3670 3626 2 3713 4575 4498 1 4645 5670 5493 1/0 5777 6968 6733 2/0 7187 8467 8163 3/0 8826 10167 9700 4/0 10741 11460 10849 250 12122 13009 12193 300 13910 14280 13288 350 15484 15355 14188 400 16671 500 18756 16828 15657 600 20093 18428 16484 750 21766 19685 17686 1,000 23478 21235 19006 Three-Conductor Cable Conduit Steel 600V 5kV 389 617 982 1559 1557 2431 2425 3830 3812 4820 4785 5989 5930 7454 7365 9210 9086 11245 11045 13656 13333 16392 15890 18311 17851 20617 20052 22646 21914 24253 23372 26980 25449 28752 27975 31051 30024 33864 32689 237 376 599 952 1482 2351 2963 3734 4686 5852 7327 9077 11185 12797 14917 16795 18462 21395 23633 26432 29865 951 1480 2347 2955 3719 4664 5820 7271 8981 11022 12636 14698 16490 18064 20607 23196 25790 29049Nonmagnetic 600V 5kV 389 617 982 1559 1555 2430 2418 3826 3789 4811 4745 6044 5926 7493 7307 9317 9034 11424 10878 13923 13048 16673 15351 18594 17121 20868 18975 22737 20526 24297 21786 26706 23277 28033 25204 29735 26453 31491 28083 237 376 599 952 1482 2350 2961 3730 4678 5838 7301 9110 11174 12862 14923 16813 18506 21391 23451 25976 28779 951 1479 2342 2945 3702 4632 5766 7153 8851 10749 12343 14183 15858 17321 19503 21718 23702 2610915kV 2407 3753 4679 5809 7109 8590 10319 12360 14347 15866 17409 18672 19731 21330 22097 23408 24887 1476 2333 2929 3673 4580 5646 6986 8627 10387 11847 13492 14955 16234 18315 19635 21437 2348215kV 2415 3779 4726 5828 7189 8708 10500 12613 14813 16466 18319 19821 21042 23126 24897 26933 29320 1478 2339 2941 3693 4618 5717 7109 8751 10642 12115 13973 15541 16921 19314 21349 23750 26608Nonmagnetic 600V 5kV 389 617 982 1560 1558 2433 2428 3838 3823 4833 4803 6087 6023 7579 7507 9473 9373 11703 11529 14410 14119 17483 17020 19779 19352 22525 21938 24904 24126 26916 26044 30096 28712 32154 31258 34605 33315 37197 35749 237 376 599 952 1482 2353 2966 3740 4699 5876 7373 9243 11409 13236 15495 17635 19588 23018 25708 29036 32938 952 1481 2350 2959 3725 4682 5852 7329 9164 11277 13106 15300 17352 19244 22381 25244 28262 3192015kV 2421 3798 4762 5958 7364 9053 11053 13462 16013 18001 20163 21982 23518 25916 27766 29735 31959 1479 2344 2949 3709 4646 5771 7202 8977 10969 12661 14659 16501 18154 20978 23295 25976 29135Note: These values are equal to one over the impedance per foot and based upon resistance and reactance values found in IEEE Std 241-1990 (Gray Book), IEEE Recommended Practice for Electric Power Systems in Commerical Buildings &amp; IEEE Std 242-1986 (Buff Book), IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems. Where resistance and reac tance values differ or are not available, the Buff Book values have been used. The values for reactance in determining the C Value at 5 KV &amp; 15 KV are from the Gray Book only (Values for 14-10 AWG at 5 kV and 14-8 AWG at 15 kV are not available and values for 3 AWG have been approximated).Table 5. &quot;C&quot; Values for BuswayAmpacity Busway Plug-In Feeder Copper Aluminum Copper 225 28700 23000 18700 400 38900 34700 23900 600 41000 38300 36500 800 46100 57500 49300 1000 69400 89300 62900 1200 94300 97100 76900 1350 119000 104200 90100 101000 1600 129900 120500 134200 2000 142900 135100 180500 2500 143800 156300 3000 144900 175400 204100 4000 -- -- 277800 Note: These values are equal to one over the impedance in a survey of industry. High Impedance Aluminum Copper 12000 -- 21300 -- 31300 -- 44100 -- 56200 15600 69900 16100 84000 17500 90900 19200 125000 20400 166700 21700 23800 188700 -- 256400 impedance per foot for198©2005 Cooper BussmannVoltage Drop CalculationsRatings of Conductors and Tables to Determine Volt LossWith larger loads on new installations, it is extremely important to consider volt loss in mind, otherwise some very unsatisfactory problems are likely to be encountered.The actual conductor used must also meet the other sizing requirements such as full-load current, ambient temperature, number in a raceway, etc.Installation in Conduit, Cable or RacewayNEC® Tables 310.16 through 310.19 give allowable ampacities (currentcarrying capacities) for not more than three conductors in a conduit, cable, or raceway. Where the number of conductors exceeds three the allowable ampacity of each conductor must be reduced as shown in the following tables:Installation in Conduit, Cable or Raceway per 310.15(B)(2)(a)The Number of Conductors In One Conduit, Raceway Or Cable 4 to 6 7 to 9 10 to 20 21 to 30 31 to 40 41 and over Percentage of Values In Tables 310.16 And 310.18 80% 70% 50% 45% 40% 35%How to Figure Volt LossMultiply distance (length in feet of one wire) by the current (expressed in amps) by the figure shown in table for the kind of current and the size of wire to be used, by one over the number of conductors per phase. Then, put a decimal point in front of the last 6 digits­you have the volt loss to be expected on that circuit. Example ­ 6 AWG copper wire in 180 feet of iron conduit­3 phase, 40 amp load at 80% power factor. Multiply feet by amperes: 180 x 40 = 7200 Multiply this number by number from table for 6 AWG wire threephase at 80% power factor: 7200 x 745 = 5364000 1 1 Multiply by 5364000 x = 5364000 #/phase 1 Place decimal point 6 places to left. This gives volt loss to be expected: 5.364V (For a 240V circuit the % voltage drop is 5.364 x 100 or 2.23%). 240 These Tables take into consideration reactance on AC circuits as well as resistance of the wire. Remember on short runs to check to see that the size and type of wire indicated has sufficient ampere capacity.Conditions Causing Higher Volt LossThe voltage loss is increased when a conductor is operated at a higher temperature because the resistance increases. If type RH, RHW, THW, or THWN wire (75°C wire) is loaded to near its full rating, or if room temperature is 15°C higher than normal, add the following percentages to get the volt loss.Conditions Causing Higher Volt LossDirect Single Or Three Phase­Power Factor Wire Size Current 100% 90% 80% 70% 60% 14 to 4 AWG 5.0% 5.0% 4.8% 4.7% 4.7% 4.6% 2 to 3/0 AWG 5.0% 5.0% 4.2% 3.8% 3 5% 3.3% 4/0 AWG to 500 kcmil 5.0% 5.0% 3.1% 2.6% 2.4% 2.0% 600 kcmil to 1000 kcmil 5.0% 5.0% 2.5% 2.2% 1.6% 1.3% If type RHH, THHN or XHHW wire (90°C. wire) is loaded to near its full rating or if room temperature is 30°C higher than normal, add twice the above percentages to get the volt loss.How to Select Size of WireMultiply distance (length in feet of one wire) by the current (expressed in amps), by one over the number of conductors per phase.Divide that figure into the permissible volt loss multiplied by 1,000,000.Look under the column applying to the type of current and power factor for the figure nearest, but not above your result ­ you have the size of wire needed.Example ­ Copper in 180 feet of steel conduit­3 phase, 40 amp Ioad at 80% power factor­Volt loss from local code equals 5.5 volts. Multiply feet by amperes by 1 180 x 40 x 1 = 7200. #/phase 1 Divide permissible volt loss multiplied by 1,000,000 by this number: 5.5 x 1,000,000 = 764. 7200Room Temperature Affects RatingsThe ampacities (carrying capacities) of conductors are based on a room temperature of 86°F or 30°C. If room temperature is higher, the ampacities are reduced by using the following multipliers; (for 0-2000 volt, insulated conductors not more than 3 conductors in raceway or direct buried, Table 310.16).Room Temperature Affects RatingsRoom Temperature °C 31-35 36-40 41-45 46-50 51-55 56-60 61-70 71-80 TW °F 87-95 96-104 105-113 114-122 123-131 132-140 141-158 159-176 Ampacity Multiplier THW, THWN THHN, XHHW* (60°C Wire) (75°C Wire) .91 .94 .82 .88 .71 .82 .58 .75 .41 .67 ­ .58 ­ .33 ­ ­Select number from Table, three-phase at 80% power factor, that is nearest but not greater than 764. This number is 745 which indicates the size of wire needed: 6 AWG.Line-to-NeutralFor line to neutral voltage drop on a 3 phase system, divide the three phase value by 1.73. For line to neutral voltage drop on a single phase system, divide single phase value by 2.(90°C Wire) .96 .91 .87 .82 .76 .71 .58 .41Open WiringThe volt loss for open wiring installations depends on the separation between conductors. The volt loss is approximately equal to that for conductors in nonmagnetic conduit. 310.15 offers a method to calculate conductor ampacity.©2005 Cooper Bussmann199Voltage Drop CalculationsCopper Conductors -- Ratings &amp; Volt LossConduit Wire Size Ampacity Type T, TW (60°C Wire) Type RH, THWN, RHW, THW (75°C Wire) 20* 25* 35* 50 65 85 100 115 130 150 175 200 230 255 285 310 335 380 420 475 545 20* 25* 35* 50 65 85 100 115 130 150 175 200 230 255 285 310 335 380 420 475 545 Type RHH, THHN, XHHW (90°C Wire) 25* 30* 40* 55 75 95 110 130 150 170 195 225 260 290 320 350 380 430 475 535 615 25* 30* 40* 55 75 95 110 130 150 170 195 225 260 290 320 350 380 430 475 535 615 Direct Current Volt Loss (See explanation prior page.) Three-Phase (60 Cycle, Lagging Power Factor.) 100% 90% 80% 70% 60% Single-Phase (60 Cycle, Lagging Power Factor.) 100% 90% 80% 70%60%Steel ConduitNonMagnetic Conduit (Lead Covered Cables or Installation in Fibre or Other NonMagnetic Conduit, Etc.)14 12 10 8 6 4 3 2 1 0 00 000 0000 250 300 350 400 500 600 750 1000 14 12 10 8 6 4 3 2 1 0 00 000 0000 250 300 350 400 500 600 750 100020* 25* 30 40 55 70 85 95 110 125 145 165 195 215 240 260 280 320 335 400 455 20* 25* 30 40 55 70 85 95 110 125 145 165 195 215 240 260 280 320 335 400 4556140 3860 2420 1528 982 616 490 388 308 244 193 153 122 103 86 73 64 52 43 34 26 6140 3464 2420 1528 982 616 470 388 308 244 193 153 122 103 86 73 64 52 43 34 265369 3464 2078 1350 848 536 433 346 277 207 173 136 109 93 77 67 60 50 43 36 31 5369 3464 2078 1350 848 536 433 329 259 207 173 133 107 90 76 65 57 46 39 32 254887 3169 1918 1264 812 528 434 354 292 228 196 162 136 123 108 98 91 81 75 68 62 4876 3158 1908 1255 802 519 425 330 268 220 188 151 127 112 99 89 81 71 65 58 514371 2841 1728 1148 745 491 407 336 280 223 194 163 140 128 115 106 99 90 84 78 72 4355 2827 1714 1134 731 479 395 310 255 212 183 150 128 114 103 94 87 77 72 65 593848 2508 1532 1026 673 450 376 312 264 213 188 160 139 129 117 109 103 94 89 84 78 3830 2491 1516 1010 657 435 361 286 238 199 174 145 125 113 104 95 89 80 76 70 633322 2172 1334 900 597 405 341 286 245 200 178 154 136 128 117 109 104 96 92 88 82 3301 2153 1316 882 579 388 324 259 219 185 163 138 121 110 102 94 89 82 77 72 666200 4000 2400 1560 980 620 500 400 320 240 200 158 126 108 90 78 70 58 50 42 36 6200 4000 2400 1560 980 620 500 380 300 240 200 154 124 104 88 76 66 54 46 38 305643 3659 2214 1460 937 610 501 409 337 263 227 187 157 142 125 113 105 94 86 79 72 5630 3647 2203 1449 926 599 490 381 310 254 217 175 147 129 114 103 94 82 75 67 595047 3281 1995 1326 860 568 470 388 324 258 224 188 162 148 133 122 114 104 97 91 84 5029 3264 1980 1310 845 553 456 358 295 244 211 173 148 132 119 108 100 90 83 76 684444 2897 1769 1184 777 519 434 361 305 246 217 184 161 149 135 126 118 109 103 97 90 4422 2877 1751 1166 758 502 417 330 275 230 201 167 145 131 120 110 103 93 87 80 733836 2508 1540 1040 690 468 394 331 283 232 206 178 157 148 135 126 120 111 106 102 95 3812 2486 1520 1019 669 448 375 300 253 214 188 159 140 128 118 109 103 94 90 83 77* The overcurrent protection for conductor types marked with an (*) shall not exceed 15 amperes for 14 AWG, 20 amperes for 12 AWG, and 30 amperes for 10 AWG copper; or 15 amperes for 12 AWG and 25 amperes for 10 AWG aluminum and copper-clad aluminum after any correction factors for ambient temperature and number of conductors have been applied.  Figures are L-L for both single-phase and three-phase. Three-phase figures are average for the three-phase.200©2005 Cooper BussmannVoltage Drop CalculationsAluminum Conductors -- Ratings &amp; Volt LossConduit Wire Size Ampacity Type T, TW (60°C Wire) Type RH, THWN, RHW, THW (75°C Wire) 20* 30* 40 50 65 75 90 100 120 135 155 180 205 230 250 270 310 340 385 445 20* 30* 40 50 65 75 90 100 120 135 155 180 205 230 250 270 310 340 385 445 Type RHH, THHN, XHHW (90°C Wire) 25* 35* 45 60 75 85 100 115 135 150 175 205 230 255 280 305 350 385 435 500 25* 35* 45 60 75 85 100 115 135 150 175 205 230 255 280 305 350 385 435 500 Direct Current Volt Loss (See explanation two pages prior.) Three-Phase (60 Cycle, Lagging Power Factor.) 100% 90% 80% 70% 60% Single-Phase (60 Cycle, Lagging Power Factor.) 100% 90% 80% 70%60%Steel ConduitNonMagnetic Conduit (Lead Covered Cables or Installation in Fibre or Other NonMagnetic Conduit, Etc.)12 10 8 6 4 3 2 1 0 00 000 0000 250 300 350 400 500 600 750 1000 12 10 8 6 4 3 2 1 0 00 000 0000 250 300 350 400 500 600 750 100020* 25 30 40 55 65 75 85 100 115 130 150 170 190 210 225 260 285 320 375 20* 25 30 40 55 65 75 85 100 115 130 150 170 190 210 225 260 285 320 3756360 4000 2520 1616 1016 796 638 506 402 318 259 200 169 141 121 106 85 71 56 42 6360 4000 2520 1616 1016 796 638 506 402 318 252 200 169 141 121 106 85 71 56 425542 3464 2251 1402 883 692 554 433 346 277 225 173 148 124 109 95 77 65 53 43 5542 3464 2251 1402 883 692 554 433 346 277 225 173 147 122 105 93 74 62 50 395039 3165 2075 1310 840 668 541 432 353 290 241 194 173 150 135 122 106 95 84 73 5029 3155 2065 1301 831 659 532 424 344 281 234 186 163 141 125 114 96 85 73 634504 2836 1868 1188 769 615 502 405 334 277 234 191 173 152 139 127 112 102 92 82 4490 2823 1855 1175 756 603 490 394 322 266 223 181 160 140 125 116 100 90 79 703963 2502 1656 1061 692 557 458 373 310 260 221 184 168 150 138 127 113 105 96 87 3946 2486 1640 1045 677 543 443 360 296 247 209 171 153 136 123 114 100 91 82 733419 2165 1441 930 613 497 411 338 284 241 207 174 161 145 134 125 113 106 98 89 3400 2147 1423 912 596 480 394 323 268 225 193 160 145 130 118 111 98 91 82 756400 4000 2600 1620 1020 800 640 500 400 320 260 200 172 144 126 110 90 76 62 50 6400 4000 2600 1620 1020 800 640 500 400 320 260 200 170 142 122 108 86 72 58 465819 3654 2396 1513 970 771 625 499 407 335 279 224 200 174 156 141 122 110 97 85 5807 3643 2385 1502 959 760 615 490 398 325 270 215 188 163 144 132 111 98 85 735201 3275 2158 1372 888 710 580 468 386 320 270 221 200 176 160 146 129 118 107 95 5184 3260 2142 1357 873 696 566 455 372 307 258 209 185 162 145 134 115 104 92 814577 2889 1912 1225 799 644 529 431 358 301 256 212 194 173 159 146 131 121 111 100 4557 2871 1894 1206 782 627 512 415 342 285 241 198 177 157 142 132 115 106 94 853948 2500 1663 1074 708 574 475 391 328 278 239 201 186 168 155 144 130 122 114 103 3926 2480 1643 1053 668 555 456 373 310 260 223 185 167 150 137 128 114 105 95 86* The overcurrent protection for conductor types marked with an (*) shall not exceed 15 amperes for 14 AWG, 20 amperes for 12 AWG, and 30 amperes for 10 AWG copper; or 15 amperes for 12 AWG and 25 amperes for 10 AWG aluminum and copper-clad aluminum after any correction factors for ambient temperature and number of conductors have been applied.  Figures are L-L for both single-phase and three-phase. Three-phase figures are average for the three-phase.©2005 Cooper Bussmann201GlossaryCommon Electrical TerminologyOhmThe unit of measure for electric resistance. An ohm is the amount of resistance that will allow one amp to flow under a pressure of one volt.Semiconductor FusesFuses used to protect solid-state devices. See &quot;High Speed Fuses.&quot;Short-CircuitCan be classified as an overcurrent which exceeds the normal full load current of a circuit by a factor many times (tens, hundreds or thousands greater). Also characteristic of this type of overcurrent is that it leaves the normal current carrying path of the circuit ­ it takes a &quot;short cut&quot; around the load and back to the source.Ohm's LawThe relationship between voltage, current, and resistance, expressed by the equation E = IR, where E is the voltage in volts, I is the current in amps, and R is the resistance in ohms.One Time FusesGeneric term used to describe a Class H nonrenewable cartridge fuse, with a single element.Short-Circuit Current RatingThe maximum short-circuit current an electrical component can sustain without the occurrence of excessive damage when protected with an overcurrent protective device.OvercurrentA condition which exists on an electrical circuit when the normal load current is exceeded. Overcurrents take on two separate characteristics ­ overloads and shortcircuits.Single-PhasingThat condition which occurs when one phase of a three-phase system opens, either in a low voltage (secondary) or high voltage (primary) distribution system. Primary or secondary single-phasing can be caused by any number of events. This condition results in unbalanced currents in polyphase motors and unless protective measures are taken, causes overheating and failure.OverloadCan be classified as an overcurrent which exceeds the normal full load current of a circuit. Also characteristic of this type of overcurrent is that it does not leave the normal current carrying path of the circuit ­ that is, it flows from the source, through the conductors, through the load, back through the conductors, to the source again.Threshold CurrentThe symmetrical RMS available current at the threshold of the current-limiting range, where the fuse becomes current-limiting when tested to the industry standard. This value can be read off of a peak let-through chart where the fuse curve intersects the A - B line. A threshold ratio is the relationship of the threshold current to the fuse's continuous current rating.Peak Let-Through Current, lpThe instantaneous value of peak current let-through by a current-limiting fuse, when it operates in its current-limiting range.Renewable Fuse (600V &amp; below)A fuse in which the element, typically a zinc link, may be replaced after the fuse has opened, and then reused. Renewable fuses are made to Class H standards.Time-Delay FuseA fuse with a built-in delay that allows temporary and harmless inrush currents to pass without opening, but is so designed to open on sustained overloads and short-circuits.Resistive LoadAn electrical load which is characteristic of not having any significant inrush current. When a resistive load is energized, the current rises instantly to its steady-state value, without first rising to a higher value.Voltage RatingThe maximum open circuit voltage in which a fuse can be used, yet safely interrupt an overcurrent. Exceeding the voltage rating of a fuse impairs its ability to clear an overload or short-circuit safely.RMS CurrentThe RMS (root-mean-square) value of any periodic current is equal to the value of the direct current which, flowing through a resistance, produces the same heating effect in the resistance as the periodic current does.Withstand RatingThe maximum current that an unprotected electrical component can sustain for a specified period of time without the occurrence of extensive damage.Electrical FormulasTo Find Single-Phase Two-Phase Three-Phase Direct CurrentAmperes when kVA is known Amperes when horsepower is known Amperes when kilowatts are known Kilowatts Kilovolt-Amperes Horsepower WattskVA  1000 kVA  1000 E2 E  1.73 HP  746 HP  746 E  2  % eff.  pf E  1.73  % eff.  pf kW  1000 kW  1000 E  2 pf E  1.73  pf I  E  2  pf I  E  1.73  pf 1000 1000 IE2 I  E 1.73 1000 1000 I  E  2  % eff.  pf I  E  1.73  % eff.  pf 746 746 I  E  2  pf I  E  1.73  pf Energy Efficiency = Load Horsepower  746 Load Input kVA  1000 Power Factor = pf = Power Consumed = W or kW = cos Apparent Power VA kVAkW = Kilowatts pf = Power Factor kVA = Kilovolt-AmpereskVA  1000 E HP  746 E  % eff.  pf kW  1000 E  pf I  E  pf 1000 IE 1000 I  E % eff.  pf 746 E  I  pfNot Applicable HP  746 E  % eff. kW  1000 E IE 1000 Not Applicable I  E  % eff. 746 EII = Amperes HP = HorsepowerE = Volts % eff. = Percent Efficiency216©2005 Cooper Bussmann`

10 pages

#### Report File (DMCA)

Our content is added by our users. We aim to remove reported files within 1 working day. Please use this link to notify us:

Report this file as copyright or inappropriate

15805

Notice: fwrite(): send of 200 bytes failed with errno=104 Connection reset by peer in /home/readbag.com/web/sphinxapi.php on line 531